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Abstract 
One of the main goals in different engineering fields, especially mechanical engineering, is to reduce the usage of 

energy. Heat exchangers are vastly being used in industry, so it of a great value to design heat exchangers at their 

optimum point in order to make use of energy efficiently. In the present work a thermo dynamical model of 

conventional cylindrical pipe, which is used in heat exchangers, is developed based on the second law of 

thermodynamics. Entropy generation, an important parameter of the heat pipe performance, is produced by the 

temperature difference between the hot and cold reservoirs, the frictional losses in the working fluid flows, and the 

vapor temperature/pressure drop along the heat pipe. Different parameters can be adjusted to minimize entropy 

generation in the system and that’s what is done in the present work. 
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Introduction 
Saving of energy is a primary objective in all 

engineering fields, especially mechanical and energy 

engineering, and that makes Efficiency somehow the 

most important factor in designing a thermo 

dynamical system. The second-law analysis is the 

gateway for optimization in thermal equipments and 

systems, which makes good engineering sense to 

focus on the irreversibilities of fluid flow and heat 

transfer processes. Entropy, a main characteristic of 

every thermo dynamical system, is defined by the 

second law of thermodynamic. The total entropy of a 

system consists of two terms, a term which is 

produced by heat transfer and the entropy generation 

term which is produced due to the irreversibilities. 

Minimization of entropy generation in a thermo 

dynamical system provides efficient use of available 

energy. Fluid flow and heat transfer inside a circular 

duct for different boundary conditions are a 

fundamental area of research in engineering. Circular 

ducts appear in many engineering applications as a 

single unit or in combination, such as in heat 

exchangers used in power and process industries to 

transfer heat from one fluid stream to another. The 

working fluid inside the pipe undergoes a thermo 

dynamic cycle which generates entropy. Entropy 

generation or Exergy destruction due to heat transfer 

and fluid flow through a duct has been investigated 

by many researchers and non-dimensional entropy 

generation number is always employed in the 

irreversibility examination of convective heat 

transfer. 

Bejan [1, 2] has done an invaluable job on founding 

the basic method of second law analysis in heat 

transfer and the development of the steps to find the 

total entropy generation in a heat transfer problem. 

Sahin [3, 4] has considered the effects of the change 

of viscosity in entropy generation for a heating 

process of a duct with constant heat flux. He has also 

calculated the required pumping power. The flow is 

considered to be a laminar viscous flow in his study. 

Entropy is generated due to several factors including 

friction and as heat transfer enhancement equipments 

usually increase friction factor, the effects of some 

heat transfer equipments on the total entropy 

generation are studied by Perez-Blanco [5] and the 

optimum points are introduced. Abolfazli and 

Alizadeh [6] have also studied the thermodynamic 

optimization of geometry in convective heat transfer 

by considering the flow to be laminar and the walls to 

be at constant temperature. In their study they have 

researched the effects of different parameter on the 

Entropy generation and pumping power and have 

tried to introduce a proper correlation for the 

optimum design of the tube. 

In the present work the formulation and calculations 

of entropy generation through a pipe with constant 

wall temperature is done by considering the flow to 

be turbulent and the minimum point for entropy 

generation is introduced as the optimum point for the 
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design of the pipe in different usages like 

conventional heat exchangers. 

 

Methodology 

 

Let us consider the constant cross sectional area duct 

shown in Fig.1. The surface temperature of the duct 

is kept constant at Tw . An incompressible viscous 

fluid with mass flow rate,m , and inlet temperature, 

Ti ,enters the duct of length L. Heat transfer to the 

bulk of fluid occurs with an average heat transfer 

coefficient h  at the inner surface. We also assume all 

properties of the fluid to be independent of the 

variation of the fluid temperature. Within the range of 

velocity considered in this study (Table1) the fluid 

flow assumed tube fully developed turbulent flow. 

The rate of heat transfer to the fluid inside the control 

volume show in Fig.1 is: 

 
 
δQ = m CpdT = h πD Tw − T dx      (1) 

m  =
ρU πD2

4
     (2) 

 
Substitute eq.2 in eq.1 and Integrate => 

 

T = Tw −  Tw − Ti exp⁡(−
4hx

ρU DCp
)    (3) 

 

Rate of entropy generation from the second law of 

Thermodynamic: 

 

dSgen
 = m ds −

dQ

Tw
   (4) 

 

And for an incompressible flow: 

 

ds =
Cp dT

T
−

dP

ρT
    (5) 

 

Now by substituting eq.5 and eq.1 into eq.4 we get : 

 

dSgen
 = m Cp(

Tw−T

Tw T
dT −

dP

ρCp T
)     (6) 

 

We need to substitute the equivalent pressure drop in 

the above eq. so that we could integrate the equation 

and obtain  Sgen
  : 

 

dP = −γ dhf     (7) 

 

dhf =
fU2

2gD
dx   (8) 

 

Where the friction factor for a fully developed 

turbulent flow in a flat tube is: 

 

f =
0.316

R
1
4

   (9) 

R =
ρU D

μ
   (10) 

 

So by substituting eq. 9 & 10 into 8 and then by 

putting eq.8 and eq. 3 into eq. 6 we get eq.11: 

 
dSgen

 

= m Cp (
4h Tw − Ti 

ρU DCp

∗

 Tw −
Ti

Tw
 ∗  exp −

4hx
ρU DCp

 ∗ exp −
4hx

pU DCp
 

Tw −  Tw − Ti exp −
4hx
ρU DCp

 

dx

+  
0.316

2Cp

  
μ

ρ
 

1
4
 

U
7
4

D
9
4

 ∗
dx

Tw −  Tw − Ti exp −
4hx

pU DCp
   

) 

 

(11) 

By assuming: 

 

τ =
Tw−Ti

Tw
,   a =

4h

ρU DCp
  ,    B =  

0.316

2Cp
  

μ

ρ
 

1

4
 

U
7
4

D
9
4

          

,      C =
B

Tw
 

 

We can rewrite eq.11 this way: 

 

dSgen
 = m Cp( aτ2 ∗

 exp  −ax  2dx

1−τ exp  −ax 
+ C

dx

1−τ exp  −ax 
)               

(12) 

 

By integrating eq.12 with respect to variable x we 

get: 

 
Sgen
 = m Cp (τ exp −ax + ln −1 + τ exp −ax  

−
C

a
ln exp −ax  

+
C

a
ln −1 + τ exp −ax  ) 

(13) 

 

So the integration along the tube length of L is: 

 

Sgen
 = m Cp(τ exp −aL + ln −1 + τ exp −aL  −

C

a

∗ l n exp −aL  +
C

a
ln −1 + τ exp −aL  

−  τ +  1 +
C

a
 l −1 + τ  ) 

(14) 



By defining: 

St =
h

ρU Cp
=

Nu

Re .pr
    ,   a =

4St

D
     ,    Sd = St.

L

D
   ,    

E =
C

4

D

Nu

Re .Pr

 

 

Let’s rewrite eq.14 

 
Sgen

m Cp

 
= τ exp  −4St

L

D
 + ln  −1 + τ exp −4St

L

D
  

− 
C

4
D

Nu
Re. Pr

ln  exp −4St
L

D
   

+
C

4
D

Nu
Re. Pr

ln  −1 + τ exp −4St
L

D
  + [τ

+ (1 −
C

4
D

Nu
Re. Pr

)ln⁡(−1 + τ)] 

(15) 

 

Dimensionless entropy generation would be: 

 

ψ =
Sgen 

Q 

Tw −Ti

         (16) 

 

Where   Q  is: 

 

Q = m Cp Tl − Ti = m Cp Tw − Ti [1 −

exp⁡(−4St.
L

D
)]      (17) 

 
Q 

Tw−Ti
= m Cp[1 − exp⁡(−4Sd)]     (18) 

 

So eq.16 would be: 

 

ψ =
τ exp −4Sd 

 1 − exp −4Sd  
+

ln −1 + τ exp −4Sd  

 1 − exp −4Sd  

−  E
ln exp −4Sd  

[1 − exp⁡(−4Sd)]

+  E
ln −1 + τ exp −4Sd  

[1 − exp⁡(−4Sd)]
 

+
 τ +  1 − E ln −1 + τ  

 1 − exp −4Sd  
 

(19) 

 

The total dimensionless entropy consists of two 

distinct parts so we can write: 

 

ψtotal
 = ψthermal

 + ψfrictional
      (20)  

 

So these terms could be written as: 

 

ψth
 =

τ exp  −4Sd 

 1−exp  −4Sd  
+

ln −1+τ exp  −4Sd  

 1−exp  −4Sd  
−

 τ+ln −1+τ  

 1−exp  −4Sd  
   (21) 

 

ψfr
 =  −E

ln exp  −4Sd  

[1−exp ⁡(−4Sd )]
+  E

ln −1+τ exp  −4Sd  

[1−exp ⁡(−4Sd )]
−

E ln −1+τ 

 1−exp  −4Sd  
   (22) 

 

In which thermal dimensionless entropy is the 

entropy which is produced due to the temperature 

difference and the frictional term is also produced 

due to the friction along the duct. 

As we are considering the flow to be fully developed 

turbulent flow we can use Nu=4.66 and by assuming 

Glycerol to be the fluid, constants would be 

calculated. The properties of the fluid are shown in 

the following table: 

 

𝑪𝒑 (J/kg.k) 2428 

k   (w/m.k) 0.264 

ρ  (Kg/m 3 ) 1260 

μ (Ns/m) 1.48 

𝑻𝒊 (k) 293 

𝑻 𝒘 (k) 373 

U (m/s) 0.5,0.1 

D (m) 0.0254 
Table 1, Thermodynamic properties of glycerol 

Results 

 

And we can plot dimensionless entropy vs. Sd 

number by assuming E and  τ to be constant to find 

the minimum point for the total entropy generation 

(fig.2) 

 
 

 

And dimensionless Entropy vs.  (Fig.3) 
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Figure 1, Variation of Dimensionless entropy with SD number   
τ=0.214 

Figure 2, Variation of Dimensionless entropy with τ number Sd=0.39 



And plotting the total entropy vs. Sd number for 

E=0.12 &E=0.007 would lead to (Fig.4) 

 

 

 
 

 

 

 

For 𝜏 = 0.38 (Fig.5): 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 

As it is seen in fig. 2 there is no minimum point for 

𝜏 = 0.214 but as the 𝜏 number is increased the range 

of the dimensionless thermal entropy generation term 

starts to grow while the frictional term doesn’t 

change that much. These unbalanced changes in the 

entropy generation terms lead to the appearance of 

the minimum point for the total dimensionless 

entropy generation along the tube for a 𝜏 number of 

approximately 𝜏 = 0.38. 

 

Conclusions 

 

This study accords with previous studies that in any 

heat transfer application with the constant wall 

temperature boundary condition, the amount of St.L / 

D, (Sd) is an important design criterion and should be 

set at the optimum value. In this study the total 

dimensionless Entropy generation was determined as 

a function of three dimensionless numbers (Sd, E,𝜏). 
The variation of total Entropy generation with any of 

these three dimensionless numbers has been plotted. 

It has been shown that there is a minimum point for 

Entropy generation which leads to the optimum point 

for the design of the thermodynamic/heat transfer 

system that yields the maximum efficiency for the 

system.  This point, in a turbulent flow, exists for 

certain ranges of   τ  number which starts at 

approximately τ = 0.38 , and for   τ = 0.21  there is 

no minimum for the system’s total entropy (in 

contrast with the laminar flow [6]) and the other 

parameter, E, has a negligible effect on the existence 

of an optimum point. Plotting the variations of 

different terms of the dimensionless entropy 

generation with the variation of 𝜏 number showed 

that an increase in 𝜏 number has a considerable effect 

on the thermal entropy generation term while not 

being so influential on the variation of the frictional 

term. 
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Figure 4, Variation of Dimensionless entropy with SD number, τ=0.38 


