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Abstract

The paper includes some more details of ATNN which is recently introduced in [IJ.
This paper, gives more details on some obscure points and claims of it. As it is
previously introduced, this approach is based on a combination of conventional Neural
Networks and tile coding approximators. The proposed approach can maintain the
desired features of both approaches while eliminates the deficiencies of each method.

1 Introduction

Training very expressive Neural Networks (NNs) have always had a high com-
putational cost and memory usage. As it is generally known, the generalization
property also decreases with the increase of the network size [2, Bl 4]. From
another point of view, small size networks have problems in representing a wide
range of functions. Several algorithms have been proposed to make the structure
of NNs and tile coding discretization adaptive [5l [0, [7, [§], so that the structure
can change whenever the network is not expressive enough. Another deficiency
of conventional NNs is that the approximation of one point cannot change with-
out changing the whole function, unless all training examples are used in the
training. However, in sequel the training with all training examples, increases
the computational cost and causes other problems such as memory shortage,
etc. On the other hand, methods with lower cost that can change the accu-
racy/complexity of approximation on subspaces, such as tile coding [9] [10] 1]
(which discretizes the state space and approximates the function piecewise on
the discretizations) and hyperplane tile coding [I1], cannot express functions
very smoothly. Another significant drawback of conventional NNs is that the
superviser cannot allocate a desired accuracy/complexity to the desired sub-
spaces. The accuracy/complexity of the approximation in conventional NNs is
the same over the whole subspace.

In this paper, we will give more details on performance and analysis of ATNN,
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which is recently proposed in [I]. As it is comprehensively clarified, the new
combination is proposed so that the approximator’s structure can change during
the training without the use of huge NNs leads to larger memory usage during
the training. In addition, the approximator can change its approximation of a
subspace without changing the approximation of the whole space, this property
is called approximation memory. The is specially of high importance in appli-
cations that need local adjustment, e.g. Reinforcement Learning [12]. It can
learn subspaces with different accuracies which is also a feature of adaptive tile
coding. In addition, it never ends up with training or simulation of big NNs.

The rest of this paper is organized as follows. In Section [2] tile coding and some
related methods are discussed. Then in Section [3| the proposed combination is
introduced and some features are discussed. Finally in Section [ the efficiency of
the proposed approach is demonstrated by means of several simulation studies.

2 Backgrounds on continuous approximators

There are several methods used in function approximation; however, most of
them have one of the two main framework ideas. First, considering a fixed
structure and changing the coeflicients, so that it converges to the desired func-
tion. Second, using a dynamic structure and changing the structure as well as
the coefficients. NN-related issues and methods are considered here.

2.1 Fixed structure Neural Networks

NN approximation have been one of the most popular approximation methods
in the recent years. Usually, the structure of the network is fixed and the
represented function is fitted to the training examples with gradient descend
method and Backpropagation [13].

2.1.1 Computational requirement of the Backpropagation method

Here the computational requirement of training a fixed structure NN using the
Backpropagation algorithm is considered. The computational cost calculated
here is used to compare computational cost of NN and ATNN methods. Let
us assume that the network is a three-layered network, as it is proven that can
express any arbitrary function with any arbitrary error having enough hidden
units [I4, 15]. Assume that the network has ¢ inputs, n hidden units and o
outputs. In such a structure there are ni input weights between the input and
the hidden units and no weights between the hidden layer and the output units.
According to the Backpropagation method [13], for each epoch, first each sample
is fed to the network, then the output errors are calculated and backpropagated
using the delta rule and weights are tuned. For each hidden unit there will be
i products and ¢ sums (including bias) and activation function is calculated,
so there will be ¢pi + cs@ + cqc computation for each hidden unit, in which c,,
Cs, Cqe are respectively computational cost of product, sum and calculation of
activation function. For each output there are n products and n sums, so there
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will be ¢,n + csn + ¢4 computation for each output unit. Then errors in the
output layer are calculated by applying the following error.

05 = (t; —05) x 0 x (1 —0y) (1)
For other layers but outputs the following error is used to propagate error.

Sn=onx(L—on)x > (wpn) (2)

k€coutputs

Where wyy, represents the weight from node A in the hidden layer to node & in
the output layer. Weights are updated by the following equation.

wij = ’LUZ'j + néjxji (3)

Where 71 represents the learning rate and x;; is the ith input to the jth unit.
The error term has 2¢, 4 2¢, computation for each output. There are o weights
from a hidden unit to the outputs. So we have o+ 2 products and (o — 1) + 1
sums for each hidden unit. So there will be ¢,04 ¢s(0+2) computation for each
hidden unit. and we have a ¢, 4+ 2c, computation for updating of each weight.
Total computation is (n(cpi+csi+ cac) +0(cpn+csn+cae) +n(cpo+cs(0+2))+
0(2¢p+2¢;))+n(i+0)(cp+2¢s)). If k1 = 2¢,+3cs, ko = 3cp+4cs, ks = cac+2¢5
and k4 = cqc+2¢p + 2¢5, we have n(kii+kao+ k3) + kso computation per epoch
per sample.

Almost all training methods based on the gradient-descend method are based
on Backpropagation and hence their computational costs are similar.

2.2 Dynamic structure Neural Networks

Dynamic structure NNs are mainly divided into two main categories, construc-
tive and pruning structures [I6]. In the first category, a simple network is
trained to learn the target function and when it fails to learn, the structure
of the network is changed, usually by adding some hidden units; examples of
such methods are Cascade-Correlation [6] and [7, 8, I7]. In the second cate-
gory, a very expressive network is trained and then the network is pruned, some
methods are expressed in [5] [8] [18] [19] 20].

2.2.1 Constructive networks

Most of the times when the performance of the network cannot reach the desired
value, the structure of the network is changed, so that the network can express
the target function. This change in structure will lead to an increase in the
computational requirement. Usually this change of structure is done by adding
some extra hidden units, therefore the network becomes more expressive. The
computational requirement and other related topics are discussed in [21].
Since the Cascade-Correlation method [6] have some similarities with the pro-
posed ATNN method, we discuss it further.
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2.2.2 Pruned networks

As the name suggests, it generally starts with a bigger NN and prone it later
[17, 21]. It is computationally more expensive than the constructive methods.
Some of these methods are discussed in [19] 20} 22] 23] 24].

2.3 Tile coding

Tile coding [12] and related methods [25, 26] 27] for approximating functions are
usually used for applications which need to retrieve information very fast and
very often and do not need the most possible accuracy such as Reinforcement
Learning [12]. In the conventional tile coding, the input space is discretized into
several tiles and the target function is approximated piecewise on these tiles.

2.4 Adaptive tile coding

As considered in [9, [10, 28], it is often hard to decide how many tiles should
the input space be split into. On the other hand, a constant tiling rate is not
always preferred, and different tiling rates might be useful. Details about how
and when the tiling rate is changed are given in [9]. Note that here, another
condition is used to decide when and where to change the tiling rate.

25 CMAC

CMACs [29, B0] are special types of NNs whose output is sum of the weights
of the tiles of the input. CMACs have the same problem with the sharpness of
the edges which is discussed and some solutions are proposed in [31] 32, B3], [34].
However, similar to tile coding, CMACs are not expressive enough for some
complex regression problems.

3 Adaptive tiled Neural Networks

As it is presented in [I], the pseudo-code of ATNN is as shown in Algorithm
After the training procedure, because of tiled structure of ATNN, we need
to take care about the way that we need to retrieve the information from the
trained network. Algorithm [2] shows how samples’ values can be retrieved. For
retrieving a set of samples’ values, all tiles must be examined to find the relative
membership of samples to them. Then the weighted average of all the results are
calculated considering the weight of corresponding memberships. The details of
this process are shown in Algorithm

3.1 Computational requirement of ATNN

As we mentioned, the computational requirement of training networks with
more than three layered is very high. On the other hand, two-layered NNs are
not expressive enough, but in comparison a three-layered networks have enough
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Algorithm 1 Pseudo-code of ATNN
T: Tiles of ATNN
S: Input samples
N: Base network
if T.Bound does not exist then
Initialize the tiles bounds T.Bound so that it include all samples.
end if
for every tile T that (T.M SFEerror > Threshold) do
I = Find all corresponding samples
if N does not exist then
N = Initialize network
end if
N = train the network with I
if N.MSFEerror < Threshold then
T.MSEerror = N.MSFEerror
Save the network N for tile T'
else
T.Bound = split(T.Bound)
end if
end for

capacity to express any function with enough hidden units[I4] [I5]. Hence here
only three-layered NNs are considered.

Let us assume function approximation problem for the case that we have o out-
puts, ¢ inputs, d training samples and m input dimensions.

Here we calculate the computational requirement of finding the relative mem-
bership of samples to tiles. Assuming that there are d training samples, a logical
comparison of the bounds of tiles with the sample inputs must be done. Hence
there will be 2mdc. computations per tile where c. is the computational re-
quirement of a single comparison. There is also an AND operator between the
upper and the lower bounds’ conditions results, so there are dm ANDs and dm
ANDs on the different dimensions conditions and finally there will be d condi-
tions for determining that each sample belongs to the kth tile or not. Therefore
the computational cost is (2mdc. + dme, +mde, +dce.) for determination of the
samples membership to a tile where ¢, is the computational cost for a single
AND. However, in practice, because the process of training is usually repeated
for many epochs, the calculated computation can be neglected as compared to
the training computation.

Let us assume that the target function can be learned with an NN with at least
n; hidden units (three-layered) with some arbitrary error. The Computational
requirement, as proven in 2.1.1} is (d(n¢(kii + kao + k3) + ks0)) per epoch.
Whereas in ATNN the algorithm tries to learn the target function by NNs with
ng hidden units so that the computational requirement of training an NN tile
will be (d;(no(k1i + k20 + k3) + k40)) per epoch, in which d; is the number of
training example in a specific tile. Considering that ng > 0,7 > 0 and we can
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neglect k4. Hence the total computational requirement of training a set of tiles
covering the whole instance space will be (d(ng(k1¢ + k20 + k3) + k40)), since
S di =d.

Assuming that the number of epochs in conventional NNs is the same as epochs
of training of each tile, it can be concluded that the computation of training
conventional NN structure is more than training a full covering set of tiles LZ—gJ
times. It is obvious that if one of the tiles become accurate enough, the compu-
tational cost will be less than what is calculated.

Assuming that after training each full covering set ofntilos the tiles are sglit
into two sub-tiles, after | *| trainings, there will be 2L767 tiles having ng2l7o
localized hidden units. Hence, the computational requirement of a conventional
NN is equal to ATNN with 9lis ] tiles.

Algorithm 2 Pseudo-code of retrieve ATNN

for every sample S do
P = Find all corresponding predictions of sample S
W = Find the relative membership weight of sample S to T’
O(S) = W.B/W .1t

end for

3.2 Capacity

Although it was shown that the ATNN with n¢2"*/™ localized hidden nodes
have the same computational cost as an NN with ng hidden units, there are
other ways that may increase the degree of freedom (DoF) of ATNN system.
For instance, if for solving the discontinuity problem, the first solution is cho-
sen, the system will have an additional smooth DoF between tiles. Meaning
that different biases of networks can make smooth step changes along the axis.
For example when the tile is a hyperplane expressed by a linear combination of
the inputs, the tile edges have an average of both tiles coefficients.

Most of NN structures use units that have a linear combination and an activa-
tion function; Every linear combination is equivalent to a weighted distance of
the point and a hyperplane. If the tiles are uniformly distributed, as we dis-
cussed, every hyperplane crosses at most £™ — (k — 1)™ tiles, in which m is the
dimension of the approximation problem and k is the number of tiles spread in

each dimension. .

= kEg"% (for the NNs with the same com-
putational requirement as the ATNN). Knowing that + — 1 < [z] < z, we can
say that the capacity of a conventional NN is at most equal to an ATNN with

" (——— — 1)™ localized hidden units (note that these localized
0 log, m no logo m

In this case, we have k = log,, olng

hidden units are not independent). Comparing mﬂﬁ with mentioned capacity,
it is obvious that the capacity growth of the ATNN is exponential, with respect

i T is a vector whose elements are all 1.
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to ng, but capacity of NN grows polynomially. On the other hand, the capacity
of NN falls with the growth of m for reasonable values of 7+ but the ATNN’s
capacity is independent of m. By comparing localized hidden units of the two
methods mentioned above, it is obvious that with the same computational re-
quirement, the ATNN is more expressive in high dimensional problems[I].

4 Practical results

In this section we are going to implement ATNN and analyse the results.

4.1 Implementations of ATNN

Here we aim to make comparisons between results derived from ATNN and
NN. In these experiments we use MLP (Multi Layer Perceptron) in our both
ATNN and NN structures. The implementations are trained with fixed sharp-
ness parameter and Joining of tiles is not considered. All figures shown in this
section include MSE (mean square error) of ATNN on training samples, number
of hidden units of the base network (df), threshold (the parameter defined in
Algorithm [I)), number and region of samples.

4.1.1 The sine function

The result of approximating a sine function by ATNN is shown in Figure
The green bar bellow the figure shows rates of tiling along z-axis. Since the
sine function can be approximated accurate enough by two NNs consisting of 2
hidden units each defined in (—3,0) and (0, 3), so ATNN approximates it with
only two tiles. It is important to remind that based on Algorithm [I]the splitting
process is done by algorithm without involvement of supervisor.

05- i

QA

15 I L L I I L I
-8 B 4 2 o 2 4 B 8

rnse = 3.7976e-006 & df =2 & Treshold = 1e-005 on 1000 random samples of [-3,3]

Fig. 1: The ATNN approximation of sin(z) function in (—3,3) by base network
consisting 2 hidden units. The green bar bellow the figure shows rates
of tiling along z-axis.
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4.1.2 The sinc(X) function

x
The approximation of sinc(%) function is shown in Figure [2| This figure shows
how ATNN can fit the tiling rate to the target function. As it is shown, the
tiling rate is proportionately much higher near 0 than near 2. The approxima-
tion shows how ATNN adaptively splits the region in order to make a proper
approximation of a function. In other words, the more variations in a function,
the more tiles we have.

-

05- B

L L I ! L !
0 0s 1 1.5 2 25 3 35
mse = 5.3691e-006 & df= 2 & Treshold = 1e-005 on 1000 random samples of [0.1,2.1]

0.4

sin(mi . .
Fig. 2: Approximation of sinc(1) = %(T) function in (0.1,2.1) by base net-

work consisting 2 hidden units.

4.1.3 The sin(2) function
The approximation of sm(%) function is shown in [3| Like the previous experi-

ment, the rate of tiles is proportionate to variations of function.

1.8 OO T 1 b

2 L L I ! L !
0 05 1 15 2 25 3 35

mse = 6.9691e-005 & df =2 & Treshold = 1e-005 on 1000 random samples of [0.12.1]

Fig. 3: Approximation of sm(%) function in (0.1, 2.1) by base network consisting
2 hidden units.
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4.1.4 The limited cosine function

The approximation of a limited cosine function, cos(z)(u(x 4+ §) —u(z — §)) is
shown in Figure 4} where u(x) stands for step function.

0 ifx<O
u(z) =< 3 ifz=0
1 ifz>0

The comparisons in the next section between NN and ATNN are based on this
function.

X3S B
06 B
044 i
02t B

Y L |
a2t [ TTTTT ] |

04 I L L I I L I
B -B -4 -2 0 2 4 B 8
rse = 5.5472e-006 & df =2 & Treshold = 1e-005 on 1000 random samples of [-3,3]

Fig. 4 The ATNN approximation of cos(x)(u(z + §) — u(x — 7)) function in
(—3,3) by base network consisting 2 hidden units.

4.2 More discussion on practical results

ATNN might have difficulties in approximating the function when its sharpness
parameter is not tuned well. The following comparisons show that both NN and
ATNN can achieve enough accuracy with acceptable computational effort. The
Figure [5| shows the difference between ATNN and NN in sharp points. NN’s
approximation is usually smoother than that of ATNN, so in sharp points ATNN
gives a better approximation. The Figure [6a] shows how ATNN can be misled
to a sharp point when there is a smooth extremum on the tile boundary[I].

As depicted in Figure [6b] ATNN’s approximation might have insignificant error
whereas NN’s approach has overfitting problem. Regarding the figure, NN’s
output is only accurate in training points. So NN’s approximation is usually
overfitted to samples but ATNN have a generalization which is determined by
sharpness parameter.

5 Future work

The sharpness parameter, as introduced have significant effect in approxima-
tion of keen of edges. One improvement for ATNN can be about discussing
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1 | 1 1 1
-1.75 1.7 -1.65 16 -1.55
mse = 5.0436e-005 & df = 1 & Treshald = 1e-007 on 1000 random samples of [-3.1416,3.1416]

(@)

Bl J

I I ! I I
185 16 1.65 1.7 175
mse = 5. 0436e-008 & df = 1 & Treshald = 1e-007 on 1000 random samples of [-3.1416,3.1416]

(b)

Fig. 5: The figure shows comparison between ATNN approximation (blue) and
NN’s approximation (green)
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1.01F b
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1.006 - b

1.004 B

1.002 - B

-0.1 -0.05 o 0.0s 0.1
mse = 4. 8784e-007 & df = 1 & Treshald = 1e-007 on 1000 random samples of [-3.1416,3.1416]

(@)

¥ 10

S5k ]

I I I ! I
1.9 -1.85 18 -178 17
mse = 5.442e-007 & df =1 & Treshald = 1e-007 on 1000 random samples of [-3.1416 3.1416]

(b)

Fig. 6: The figure shows some advantages and disadvantages of ATNN in com-
parison to NN.
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on methods for fine-tuning sharpness parameter, in order to find favourable
approximation for wide range of functions and without direct interference of
supervisor. Furthermore, in this paper our comparisons were completely based
on MLP; but as we mentioned, we can used any function approximator in the
ATNN structure. Even any other approximator can show different behaviours.
However, here we showed applicability of ATNN by several functions, it is of high
value to show its applicability in a more realistic application, e.g applications
in Control Design, Reinforcement Learning, etc.
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