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Abstract—In cognitive radio systems the primary users’ spec-
trum is shared by secondary users. To ensure primary users’
reliable communication, total interference inflicted at the primary
receivers by secondary transmitters should be lower than a
certain interference threshold. In fading environments secondary
users can take advantage of the fade property of the channel
to opportunistically transmit at high rates at the instants when
the channel between the secondary transmitter and the primary
receiver is in deep fade so that the interference inflicted at
the primary user’s receiver remains less than the interference
threshold. In this paper, we assume that a number of secondary
users are trying to transmit their data to a single secondary
receiver in a multiple-access fading channel in presence of
primary transmitters and receivers. Here also we use the fade
property of the channel to propose a power control policy for
maximizing the capacity region of this multiple-access channel.
We investigate the problem for two scenarios of having and not
having power constraints imposed on secondary transmitters.
In both scenarios a power control algorithm is proposed to
maximize the capacity region. For the simple case of having
just one pair of primary transmitter and receiver without any
power constraint imposed on the secondary transmitters we show
that the best strategy to maximize the capacity region is to
choose the secondary user with the largest ratio of the gain of
the channel between this user’s transmitter and the secondary
receiver to the gain of the channel between this user’s transmitter
and the primary receiver and allow just this user to transmit
while the others are quiet. If the number of primary transmitters
and receivers becomes more, while considering the gains of the
secondary users channels, we should also include all of the
gains of the channels between the secondary transmitters and
the primary receivers in our strategy to maximize the capacity
region. All of these results are independent of the channels fading
distribution.

Index Terms—Cognitive Radio, Spectrum-Sharing, multiple-
access channel, Optimal Power Control, Capacity, Fading Chan-
nel.

I. INTRODUCTION

Rapid development of communication technology and the
widespread use of wireless communication systems have
caused a great amount of demand for the radio spectrum which
is a very limited and expensive natural resource. By paying
money users can buy frequency bands and then they are exclu-
sively licensed to use those bands within an allowed transmit
power (to avoid interference). This traditional approach seems
to reach to an end since all the limited spectrum is almost
allocated. On the other hand studies show that most of the
allocated spectrum experiences low utilization in most of the
time but unlicensed bands of the spectrum experience heavy

utilization [1] and [2]. The idea of cognitive radio was first
introduced by J. Mitola [3] to utilize the spectrum efficiently.
Comprehensive overviews of the fundamental limits, policy
issues, challenges and techniques of cognitive radio can be
found in [4]-[7].

In the early cognitive radio papers the secondary users were
supposed to sense the bands and when they found spectrum
holes they began sending on those bands [7]. Nowadays, the
trend is toward considering both of the primary and secondary
users transmission simultaneously [8]. In this new scheme it is
supposed that the interference inflicted at the primary receivers
is below a certain threshold which is named interference
temperature by [1]. With this assumption the power emitted
from a secondary transmitter does not have to be limited as
long as the interference inflicted on the primary receiver is
below the threshold but there may be power constraints on
the secondary transmitters due to some practical considerations
like power constraints due to safety considerations or hardware
capabilities. Utilizing the concept of interference temperature,
recent trend in spectrum-sharing context is on using the
constraint on just the received power at the primary receiver
while the previous works assumed constraints to be on the
transmitted power [9].

Gapstar [10] obtained the channel capacity under received
power constraints and gave rise to Ghasemi [9] to find the ca-
pacity of fading channels under such constraints. Surprisingly
Ghasemi found that the capacity of severe fading channels
can become even greater than the capacity of AWGN chan-
nels while [11] had previously shown that with transmitted
power being constrained instead, capacity is lower than fading
(except at low signal-to-noise ratios).

Sum throughput of a multiple-access channel under average
transmitted power constraints is on the other hand shown
to be maximized when at each instant only the user having
the best channel gain is allowed to transmit [12]. This Idea
excited us to extend their results to the spectrum-sharing case
when a number of secondary transmitters in a multiple-access
fading channel with constraints on both the transmitted powers
and received powers are trying to send their data to a single
receiver.

In order to be sure that we can use the multiple-access
channel relations, we model the interference inflicted at the
secondary receiver by primary transmitter as weak interference
in which we suppose that all the inflicted interference is so



weak that we can consider it as a part of the additive noise.
We investigate the problem of maximizing the capacity

region of the secondary users’ multiple-access channel and
propose power control policies to maximize this capacity
region. We have solved the problem for the two scenarios of
imposing and not imposing power constraints on secondary
transmitters. Our results suggest that in order to maximize the
capacity region in the simple case of having just one pair of
primary transmitter and receiver and not imposing constraints
on transmitter powers we should choose the secondary trans-
mitter which has the largest ratio of channel gain between
that transmitter and the secondary receiver to the channel
gain between that transmitter and the primary receiver and
allow just this transmitter to transmit its data while the others
are quiet. If the number of primary transmitters and receivers
becomes more, while considering the gains of the secondary
users channels, we should also include all of the gains of the
channels between the secondary transmitters and the primary
receivers in our strategy to maximize the capacity region.

The structure of the paper in remainder is as follows. In the
next section we describe the system model and our assump-
tions. The optimal power control policy to reach the maximum
capacity region for both scenarios of power constraint in
inspected in the sections 3 and 4. Numerical results are shown
in the section 5 and concluding remarks are provided in section
6.

II. SYSTEM MODEL

In this paper we suppose that in the presence of M primary
transmitters and receivers, K secondary transmitters are trying
to send their data to a single secondary receiver as shown in
Fig. 1. We assume that all the channels between transmitters
and receivers are flat fading channels with an arbitrary fading
distribution and the noise in the channels is assumed to be
white Gaussian with power spectral density N0 the system
bandwidth is also assumed to be B. In the next sections we will
show that our results are independent of the fading distribution
of the channel . We denote the instantaneous channel power
gain between the i-th secondary transmitter and the secondary
receiver by gssi and the instantaneous channel power gain
between the i-th secondary transmitter and the j-th primary
receiver by gsipj . All of theses gains are assumed to be
stationary and ergodic and it is proposed that these random
variables have the joint probability density function of f(g)
in which g = (gss1, gss2, ..., gssK , gs1p1 , gs1p2 , ..., gsKpM

)
is the vector of instantaneous channel power gains. In the
numerical results section we have assumed a Rayleigh fading
distribution for channels and therefore the channel power gains
will have an exponential distribution. Also in that section in
order to alleviate complexity of computation we have assumed
to have independent fading channels which means that the
probability density function f(g) can be factorized in the
form f(g) =

∏K
i=1 f(gssi)

(∏M
j=1 f(gsipj )

)
. Therefore in

that section all the channels have exponential channel power
gains which are independent and without loss of generality
we can assume these gains to have unit mean. Power control
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Fig. 1. Multiple-access fading channel with spectrum-sharing interference
constraint

at the transmitters requires to know CSI. Thus throughout the
paper the secondary transmitters are assumed to have perfect
CSI which means that in each instant all the transmitters
know the instantaneous value of the vector g which is quite
different from the full CSI in [11]. Feeding back the value
of g to secondary transmitters may be carried out directly or
indirectly through a band manager which mediates between
the two parties [4]. Using the perfect CSI we suppose that
the i-th secondary transmitter sets its power to Pi(g) =
Pi(gss1, gss2, ..., gssK , gs1p1 , gs1p2 , ..., gsKpM

). Our objective
is to find optimal Pi(g) for 1 ≤ i ≤ K to maximize the capac-
ity region of the multiple-access channel with power control.
As stated earlier in spectrum-sharing model the interference
inflicted at the primary users receiver should not exceed a
certain threshold, Q. The transmitted power of the secondary
transmitters can also be constrained to a power P or can be
released both of which are studied next.

III. OPTIMAL POWER CONTROL WITH POWER
CONSTRAINT

The interference inflicted at the j-th primary receiver is in
fact the sum of interferences by all of the secondary transmit-
ters and thus the interference constraints can be represented
as

K∑
i=1

∫
g

gsipj Pi(g)f(g)dg ≤ Qj 1 ≤ j ≤ M (1)

In which Qj is the interference threshold for the j-th primary
receiver. By imposing power constraints on secondary trans-
mitters we can suppose that the mean transmitted power of
the i-th secondary transmitters should be below the threshold
Pi. This can be shown mathematically as∫

g

Pi(g)f(g)dg ≤ Pi 1 ≤ i ≤ K (2)

In fact we want to maximize the multiple-access channel
capacity region subject to these two conditions. The capacity



region of the multiple-access channel with power control is
stated by the following set of equations.

∀S ⊂ {0, 1, 2, ..., K}∑
i∈S

Ri ≤
1
2
log

(
1 +

∑
i∈S

Pi(g)gssi

BN0

)
(3)

In a fading environment the coefficients gssi are modelled
as random variables and therefore for a fading channel sum-
of-rates capacity is the average of the sum-of-rates capacity
for each possible realization of the vector g which is stated in
(4).

C =
1
2

∫
g

log

(
1 +

K∑
i=1

Pi(g)gssi

BN0

)
Pi(g)dg (4)

Our capacity maximization problem is now transformed
to maximizing (4) subject to (1) and (2) and also another
constraint which is the positiveness of power

Pi(g) ≥ 0 (5)

Using the Lagrange multipliers Λj for 1 ≤ j ≤ M
corresponding to each constraint in (1) and λi for 1 ≤ i ≤ K
corresponding to each constraint in (2) and using the convexity
of the logarithm, we obtain the following system of inequali-
ties governing Pi(g)

1 +
K∑

i=1

Pi(g)gssi

BN0
≥

gssi

BN0∑M
j=1 Λjgsipj + λi

(6)

With equality if and only if Pi(g) > 0.
In order to reduce the complexity of problem we assumed

that all of the secondary users have the same average transmit
power P and also all the primary receivers have the same in-
terference threshold Q. Therefore by symmetry in inequalities
of relation (2), all the λis must be equal (we suppose that all
of them are equal to the constant λ.) Assuming that the gssi

and gsipj are all different, we have that Pi(g) 6= 0 ⇒ Pj(g) =
0,∀j 6= i and consequently

gssi

BN0∑M
j=1 Λjgsipj + λ

≥
gssj

BN0∑M
j=1 Λjgsipj + λ

(7)

Interpreting this equation we can say that in order to have
the maximum sum-of-rates capacity we should choose the
secondary transmitter for which the value of direct channel
gain to side channel gains Ratio which we denote by R(i) for
the i-th secondary transmitter and define by

R(i) =
gssi∑M

j=1 Λjgsipj + λ
(8)

is largest and allow just this transmitter to transmit with the
power that we will find later at any given instant and others
must remain quiet until for one of them this value becomes
the strongest. In equation (8) every side channel gain in the

denominator is multiplied in one of the Lagrange multipliers
which are found latter. This shows that each channel gain
to some extent contributes in the computation of R(i). If
a channel between the secondary transmitter and a primary
receiver has a large gain compared to the direct secondary
channel (between secondary transmitter and receiver), it can
significantly reduce the value of R(i) for that transmitter and
vice versa.

If the fading distribution of the channels between the
secondary transmitters and primary receivers are all the same
which is usually the case and having the assumption of the
same interference thresholds, the inequalities of relation (1)
would all be the same and therefore all of the Λjs would be
equal to a constant Λ and (8) can be further simplified as

R(i) =
gssi

Λ
∑M

j=1 gsipj + λ
(9)

After doing the optimization processes optimal power con-
trol for the i-th secondary transmitter in this case is obtained
to be of the form

Pi(g) =
1

Λ
∑M

j=1 gsipj
+ λ

− BN0

gssi

(10)

For the time when we have
gssi

Λ
∑M

j=1 gsipj + λ
>

gssj

Λ
∑M

j=1 gsipj + λ
∀j 6= i (11)

and in the same time

gssi

BN0
> Λ

M∑
j=1

gsipj + λ (12)

Otherwise the optimal power control is of the form

Pi(g) = 0 (13)

Now If R(m) ≥ R(i) for all 1 ≤ i ≤ K then using the above
expressions λ and Λ are found by solving the following system
of equations∫

g

(
1

Λ
∑M

j=1 gsmpj + λ
− BN0

gssm

)+

f(g)dg = P (14)

∫
g

gsmpj

(
1

Λ
∑M

j=1 gsmpj + λ
− BN0

gssm

)+

f(g)dg = Q (15)

In these equations and in the next parts of the paper (.)+

denotes max{., 0}.The maximum sum-of-rates capacity can
then be found by substituting (10) and (13) into (4) as follows

Cpc,max =

1
2

∫
g

log

(
gssm

BN0Λ
∑M

j=1 gsmpj + BN0λ

)
f(g)dg (16)

The above Integration should be taken over the region gssm ≥
BN0Λ

∑M
j=1 gsmpj + BN0λ. An important point is that as

our proposed algorithm suggests in order to have maximum
sum-of-rates capacity, we should search for the secondary



transmitter with the largest value of R(i). Also it is notable that
the value of R(i) becomes larger if the value of gss∑ M

j=1 gspj
+ λ

Λ

becomes larger which is simply the value of the fraction
of instantaneous channel power gain between a secondary
transmitter and the secondary receiver to the instantaneous
channel power gains between secondary transmitters and the
primary receivers plus a constant value. This constant value
which is the ratio λ

Λ becomes smaller if the transmitted power
constraint is much more released relative to the interference
power constraint. It is interesting to note that our proposed
algorithm is a novel type of multiple access technique in
which time sharing is performed based on the measurements
of the instantaneous channel gains. As it is seen we did
not use the probability distribution of P (g) in any parts
of our maximization procedure and therefore our results are
independent of the fading distribution of the channel.

IV. OPTIMAL POWER CONTROL WITHOUT POWER
CONSTRAINT

In this section we study the condition in which no power
constraint is imposed on the secondary transmitters. In fact this
is the case which is now much more considered in the literature
these days since satisfying the interference condition in most
of the cases causes the power constraints to be satisfied and
therefore the power emitted from a secondary transmitter does
not have to be limited as long as the interference inflicted on
the primary receiver is below the threshold. In this scenario
the inequalities of relation (2) no longer exist and therefore
we have similar relations to the relations of (6) through (16)
but with this difference that in this case we do not have the
constant λ in these relations. As a simple case of this scenario
we study the case of having just one pair of transmitter
and receiver. Here We just have equation (1) which with
the assumption of having just one pair of transmitter and
receiver introduces the constraint λ0 in the Lagrange method.
The Capacity maximization problem in this scenario reduces
to maximizing (4) with the constraints of (1) and (5). After
solving this convex optimization problem, (6) reduces to

1 +
K∑

i=1

Pi(g)gssi

BN0
≥ gssi

BN0λ0gspi

(17)

which should be satisfied for all 1 ≤ i ≤ K. The equality
is achieved if and only if Pi(g) ≥ 0. Similar to the scenario
discussed in the previous section we see that if Pi(g) 6= 0 ⇒
Pj(g) = 0,∀j 6= i and consequently

gssi

gspi

≥
gssj

gspj

(18)

Which surprisingly mean that in the case of imposing just
the interference condition and ignoring the transmit power
constraints the sum-of-rates capacity is maximized when we
allow just the secondary transmitter with the largest ratio
of the instantaneous power gain of the channel between the
secondary transmitter and the secondary receiver to the in-
stantaneous power gain of the channel between the secondary

transmitter and the primary receiver to transmit and the other
secondary transmitters remain quiet. Optimal power control
for the i-th secondary transmitter in this case is of the form

Pi(g) =
1

λ0gspi

− BN0

gssi

(19)

For the time when we have
gssi

gspi

>
gssj

gspj

∀j 6= i (20)

and in the same time
gssi

gspi

> BN0 (21)

Otherwise the optimal power control is of the form

Pi(g) = 0 (22)

In this scenario, after finding the optimal power control we can
substitute it in the interference constraint to find the accurate
value of λ0. If the index of the secondary transmitter with
the largest gssi

gspi
is denoted by m then λ0 is easily found by

solving ∫
g

(
1

λ0BN0
− gssm

gspm

)+

f(g)dg =
Q

BN0
(23)

Then the maximum of sum-of-rates capacity is found by
substituting the optimal power control into (4) which is

Cnpc,max =
1
2

∫
g

log
(

gssm

gspmλ0BN0

)
f(g)dg (24)

The integration is taken over the region gssm

gspm
≥ λ0BN0. As

also stated earlier we can see that the transmission scheme is
independent of the fading distributions of the channels.

V. NUMERICAL RESULTS

In this section due to the complexity of solving integral
equations we present some of the numerical results for the
relatively simple case of having just one pair of primary trans-
mitter and receiver. We suppose to have just two secondary
transmitters which are trying to communicate with a secondary
receiver. We investigate the common case of Rayleigh fading
distribution for the channels and suppose that all the instanta-
neous channel power gains are mutually independent so that
we can factorize the probability distribution as

f(g) = f11(gsp1)f21(gsp2)f12(gss1)f22(gss2) (25)

Where each fij is an exponential probability distribution.
Without loss of generality we suppose that the mean of all
of these probability distributions is unity. We consider the
case when there are constraints on transmitted powers and
we introduce γ = λBN0 and Γ = ΛBN0. Hence the equation
(14) reduces to

∫ +∞

0

∫ +∞

Γgspm+γ

(
1

Γgspm + γ
− 1

gssm

)
×e−gssme−gspmdgssmdgspm =

P

BN0
(26)



Computing this double integration, we reach the following
equation

Γ + 1
Γ

e
γ
Γ Ei

(
1,

γ

Γ
(Γ + 1)

)
− Ei(γ) =

P

BN0
(27)

In which Ei(n, x) is an exponential integral defined by

Ei(n, x) =
∫ +∞

1

e−xt

tn
dt (28)

Equation (15) also reduces to∫ +∞

0

∫ +∞

Γgspm+γ

(
gspm

Γgspm + γ
−

gspm

gssm

)
×e−gssme−gspmdgssmdgspm =

Q

BN0
(29)

Using the defined function Ei(n, x) this equation can also be
simplified to the equation

e
γ
Γ

(
1 − γ

Γ
− γ

Γ2

)
Ei

(
1,

γ

Γ
(1 + Γ)

)
+

e−γ

Γ
− Ei (γ) =

Q

BN0
(30)

To find the capacity we need to solve the two equations of
(27) and (30) simultaneously, to find γ and Γ which is very
complicated to do analytically and we should solve these equa-
tions numerically. Once we have found these two unknowns
we can find the maximum value of sum-of-rates capacity from
equation (16). Substituting our probability density function of
equation (25) in (16) we have the following integral

Cpc,max =
1
2

∫ +∞

0

∫ +∞

Γgspm+γ

log
(

gssm

Γgspm + γ

)
×e−gssme−gspmdgssmdgm (31)

We can further simplify this equation using the Ei(n, x)
function.

Cpc,max = −1
2
e

γ
Γ Ei

(γ

Γ
(1 + Γ)

)
+

1
2
Ei (γ) (32)

For the case of having no transmit power constraints the
problem is much simpler since we need to solve just one
equation. In this case if we substitute the probability density
function of (25) into (23) and after simplification we will have∫

gssm

∫
gspm

(
1

λ0BN0
− gssm

gspm

)
fm2 (gssm)

×fm1

(
gspm

)
dgssmdgspm =

Q

BN0
(33)

This integration should be taken over the region gssm

gspm
≥

λ0BN0. By introducing the random variable w = gssm

gspm
we

can even simplify this integral as∫ 1
λ0BN0

0

(
1

λ0BN0
− w

)
fw(w)dw =

Q

BN0
(34)
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Note that the ratio of two exponential random variables of unit
mean will have a log-logistic probability density function as
defined by

fw(w) =
1

(1 + w)2
, w ≥ 0 (35)

Therefore after doing the integration using (35), we can even
further simplify (34) to

1
λ0BN0

− log
(

1 +
1

λ0BN0

)
=

Q

BN0
(36)

We can numerically find λ0 from this equation and then find
the capacity using (24) and (35) as follows

Cnp,max =
1
2

∫ +∞

λ0BN0

log
(

w

λ0BN0

)
1

(1 + w)2
dw

=
1
2
log

(
1 +

1
λ0BN0

)
(37)

In Fig. 2 we compare the average sum-of-rates capacities
for the both cases when we have constraints on transmitted
power of the secondary transmitters and when we do not
have. This figure clearly shows that when the interference
limit is increased the sum-of-rates capacity also increases
which was expected. On the other hand when the interference
threshold is increased the capacity approaches to the capacity
of a simple multiple-access channel and thus at high ratios of
Q/BN0 the capacity seems to become constant as we increase
the interference threshold. Also it is easily seen from this
figure that by increasing the limiting factor of the secondarys’
transmit power P , we approach to the case we do not have
any power constraint on transmit power which was expected.

In Fig. 3 we assumed the case when we vary the value
of transmit power upper limit on secondary transmitters and
evaluated capacity versus interference threshold. As we ex-
pected, by increasing the value of P/BN0 the capacity is
also increased since we are removing the power transmission
constraints and this causes to increase capacity but for high
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value of P/BN0 this increase will have less impact on capac-
ity since we have already removed all of the transmit power
constraints and we are limited by the interference constraint
rather than the transmission power constraints. Also as it is
clearly seen from this figure, by increasing the interference
threshold Q, the capacity increases since a constraint is being
more relaxed. The nonlinear equations of (27) and (30) do not
have a solution for every value of P and Q therefore in this
figure for every value of Q/BN0 there exists just a limited
region of P/BN0 for which the equation set has a solution
and capacity can be computed.

VI. CONCLUSION

In spectrum-sharing systems users can use the fade property
of the channel to transmit at high rates when the channel
between them and the primary receiver is in deep fade.
Motivated by this concept we evaluated the multiple-access
channel between the secondary users in a spectrum-sharing
system in fading environments. For the cases with and without
power constraints on secondary transmitters we investigated
the problem and we proposed a transmission strategy for the
secondary users to achieve the maximum capacity region of
the multiple-access channel.

ACKNOWLEDGEMENT

Authors would like to acknowledge S. Vakilinia, M. Yassaee
and R. Kazemi for their comments and discussions. This work
was partially supported by Iran Telecommunication Research
Center (ITRC), which the authors wish to acknowledge too.

REFERENCES

[1] ”Spectrum policy task force report,” Federal Communications Commis-
sion 2002

[2] T. A. Weiss and F. K. Jondral, ”Spectrum pooling: an innovative strategy
for the enhancement of spectrum efficiency,” IEEE Commun. Mag., vol.
42, no. 3, Mar. 2004 Commission 2002

[3] J. Mitola III, ”Cognitive radio for flexible mobile multimedia communi-
cation,” in Proc. IEEE Int. Workshop on Mobile Multimedia Commun.
(MoMuC), San Diego, CA, USA, Nov. 1999, pp. 310.

[4] J. M. Peha, ”Approaches to spectrum sharing,” IEEE Commun. Mag.,
vol. 43, no. 2, pp. 1012, Feb. 2005

[5] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, ”Next
generation/dynamic spectrum access/cognitive radio wireless networks: a
survey,” Computer Networks: The Int. J. of Computer and Telecommun.
Networking, vol. 50, no. 13, pp. 21272159, Sept. 2006.

[6] S. Haykin, ”Cognitive radio: Brain-empowered wireless communica-
tions,” IEEE J. Select. Areas Commun., vol. 23, no. 2, pp. 201220, Feb.
2005.

[7] W. D. Horne, ”Adaptive spectrum access: using the full spectrum space,”
available online at: http://tprc.org/papers/2003/225/Adaptive Spectrum
Horne.pdf

[8] N. Devroye, P. Mitran, and V. Tarokh, ”Achievable rates in cognitive
radio channels,” IEEE Trans. Inform. Theory, vol. 52, no. 5, pp.
18131827, May 2006.

[9] A. Ghasemi, Elvino S. Sousa, ”Capacity of fading channels under
spectrum-sharing constraints,” in Proc. IEEE Int. Conf. Commun. (ICC),
Istanbul, Turkey, June 2006, pp. 4373-4378.

[10] M. Gastpar, ”On capacity under received-signal constraints,” in 42nd
Annual Allerton Conference on Communication, Control and Computing,
September 2004.

[11] A. J. Goldsmith and P. P. Varaiya, ”Capacity of fading channels with
channel side information,” in IEEE Transactions on Information Theory,
vol. 43, no. 6, pp. 1986-1992, November 1997.

[12] R. Knopp and P. Humblet ”Information capacity and power control
in single cell multiuser communications,” in Proc. IEEE International
Conference on Communications, vol. 1, pp.331-335, June 1995.


