Elaheh SADEGHABADI

Personal Data

EMAIL:	e_sadeghabadi108@alum.sharif.edu	
	sadeghabadi108@yahoo.com	
WEBSITE:	alum.sharif.edu/~e_sadeghabadi108/	

EDUCATION

Sep. 2015-Sep. 2017	Master of Science in ELECTRICAL ENGINEERING Major: Commu- nication Systems Sharif University of Technology, Tehran, Iran Rank: 432 Thesis: "Asynchronous and Synchronous Massive MIMO Net- works: A Stochastic Geometry Approach" Advisor: Prof. Ma- soumeh NASIRI-KENARI GPA: 16.63/20
Sep. 2010-Feb. 2015	Bachelor of Science in ELECTRICAL ENGINEERING Major: Commu- nication Sharif University of Technology, Tehran, Iran Rank: 432 Thesis: "Introduction to Internet of Things and Arduio boards" Advisor: Prof. Mohammad-Reza PAKRAVAN Overall GPA: 15.67/20, GPA excluding the first two years: 16.54/20

AWARDS AND HONORS

2010 Ranked between the first 1.5% of students in the University Entrance Exam for Undergraduate Studies Around 320,000 students participated in the university entrance examination for undergraduate studies in 2010.

Research Interest

The Fifth Generation of Cellular Mobile Communications Massive MIMO Stochastic Geometry Internet of Things

PUBLICATION

E. Sadeghabadi, S.M. Azimi-Abarghouyi, B. Makki, M. Nasiri-Kenari, "Asynchronous Downlink Massive MIMO Networks: A Stochastic Geometry Approach," submitted on Jun. 2018 in *IEEE Transactions on Wireless Communications* and received **major revision** on Nov. 2018. arxiv.org/pdf/1806.02953.pdf

ACADEMIC PROJECTS

MSc projects	MSc Thesis		
• •	Asynchronous and Synchronous Massive MIMO Networks: A		
	Stochastic Geometry Approach		
	Inf & Coding Theory		
	RETRIEVING INFORMATION IN COMMUNICATION NETWORKS USING THE		
	OVERLAPS BETWEEN THE PACKAGES		
	- Developed an algorithm for retrieving the original sequence.		
	- Provided an upper bound of error probability of the retrieving algorithm.		
	Coding Theory		
READ-SOLOMON ENCODER AND DECODER SIMULATION			
	Comm. Seminar		
	INTRODUCTION TO MASSIVE MIMO SYSTEMS		
	Mobile Comm.		
	INTRODUCTION TO CENTRALIZED, CLOUD, COOPERATIVE, COLLABORATIVE, &		
	Clean RAN (C-RAN)		
BSC projects	BSC Thesis		
	INTRODUCTION TO INTERNET OF THINGS AND ARDUID BOARDS		
	MICLOWAVE AND AND MICHINA MANE CHIPE		
	MODAL ANALYSIS OF RECTANGULAR WAVEGUIDE		
	DALA NELWOLK		
	CREATING WIRELESS ROUTING-SCHEDULING AGENTS WITH OPNET SIMULA-		
	TOR Drovided understanding how to create simple agents with ODNET		
	Provided understanding how to implement different layer in ODNET		
	- Provided introduction to routing and scheduling algorithm in wireless networks		
	FM Field and Waves		
	ANALYSIS OF ENTERING A WAVE IN A MULTI-LAYERED DIFLECTRIC		
	Wireless Communication		
	1- SIMULATION OF OUFUING SYSTEM		
	2- ANALYSIS OF PATH LOSS AND SHADOWING IMPACT		
	Digital Communication		
	1- HUFFMAN SOURCE CODING SIMULATION		
	2- 64-OAM MODULATION AND DEMODULATION AND ANALYZING PULSE SHAP-		
	ING IMPACT		
	Digital Signal Processing		
	1- ANALYSIS OF PERIODIC SIGNALS IN THE FREQUENCY DOMAIN, MODULATION		
	AND DEMODULATION, NON-LINEAR SYSTEMS, THE Z-TRANSFORM, AND 2-D		
	SIGNALS		
	2- ANALYSIS OF ALIASING IN IMAGE PROCESSING, QUANTIZATION ERROR, AU-		
	dio processing, and Filter bank		
	3- INTRODUCTION TO WINDOW DESIGN AND ANALYSIS TOOL, FILTER DESIGN		
	and analysis tool, filter design using FilterBuilder, and audio pro-		
	cessing using SPtool from MATLAB's Wintool		
	Computer Structure		
	CONSTRUCTING A SIMPLE DIGITAL OSCILLOSCOPE		
	Intro Programming		
	DATA STRUCTURE USING C++		

WORK EXPERIENCE

Fall 2016	TA at Digital Communication Labratory	
	Provided introduction to digital modulation, modulated signals, and practical issues.	
Summer 2014	Summer Intern at IRAN TELECOMMUNICATION RESEARCH CENTER Provided analysis of quality of service in FTTx structures.	

COMPUTER SKILLS

Basic Knowledge:	C++, OPNET, MS project, Excel
Intermediate Knowledge:	Word, PowerPoint, MATLAB, LATEX

LANGUAGES

TOEFL iBT:	Reading: 22 Listening: 22 Speaking: 19 Writing: 25
	Total: 88

References

Masoumeh Nasiri-Kenari

Professor Electrical Eng. Dept. Sharif University of Tech. Tehran, Iran mnasiri@sharif.edu,+982166164333

Behrooz Makki

Expert researcher Ericsson Research Center Gothenburg, Sweden Postdoc researcher Signals and Systems Dept. Chalmers University of Tech. Gothenburg, Sweden behrooz.makki@chalmers.se,+46 72 593 98 80

Mohammad-Reza Pakravan

Associate Professor Electrical Eng. Dept. Sharif University of Tech. Tehran, Iran pakravan@sharif.edu,+98 21 66165922