
Schedule Swapping: A Technique for Temperature Management of Distributed
Embedded Systems

Farzad Samie Ghahfarokhi
Department of Computer Engineering

Sharif University of Technology
Tehran, Iran

Email: samie@ce.sharif.edu

Alireza Ejlali
Department of Computer Engineering

Sharif University of Technology
Tehran, Iran

Email: ejlali@sharif.edu

Abstract—A distributed embedded system consists of differ-
ent processing elements (PEs) communicating via communi-
cation links. PEs have various power characteristics and in
turn, have different thermal profiles. With new technologies,
processor power density is dramatically increased which results
in high temperature. This alarming trend underscores the
importance of temperature management methods in system
design. The majority of proposed techniques to address thermal
issues, impose severe penalties on performance and reliability.
We present Schedule Swapping, a technique for reducing peak
temperature in distributed embedded systems while satisfying
real-time constraints. Contrary to many other approaches, our
proposed technique does not use slack time for reducing power
dissipation but leaves it to be used by recovery mechanisms
(rollback re-execution). The more slack time, the more the
number of possible recoveries and the more reliability. We
also introduce a simple yet effective scheme to ensure that all
the deadlines will be met if our technique is used. This scheme
also determines the order in which tasks should transmit their
data in Schedule Swapping. Our experimental results show
up to 18.1◦C reduction in peak temperature. On average,
Schedule Swapping achieves the peak temperature reduction
of 11.13◦C.

Keywords-thermal management; embedded system; dis-
tributed embedded system; task migration;

I. INTRODUCTION

Advances in semi-conductor technology have led to an
increase in the level of on-chip integration and production of
chips with smaller feature sizes. With this trend of increasing
power density of chip, the thermal issues in systems are
becoming acute [1]. Elevated temperature not only results
in increasing the circuit delay but also degrades the system
reliability [2]. Furthermore, increased temperature can de-
crease the mean time to failure and cause physical damages
to the chip [3]. In general, thermal issues are becoming
significant determinant of performance, reliability and cost
of processors [4]. Thermal problem is more prominent in
embedded systems where exploiting cooling mechanisms
such as fan and modern heat sinks is not a common practice
due to mobility, power, reliability and size constraints [5].

Researchers have recently investigated many techniques
for thermal management both at design time through static

scheduling [6], static voltage scaling [6], packaging and
task allocation [7], and at run time through various dy-
namic scheduling ([5], [8] and [9]) and dynamic thermal
management (DTM) methods ([10]). Since the program
workload may vary when running under different inputs
and conditions, it is difficult to predict such variations
prior to the time when the task is executed [11]. Making
decisions on thermal management at design time (static
solutions) when sufficient information about the workload
and communication requirements are not available, are not
preferable solutions [8]. In contrast, run time solutions can
dynamically monitor the workload and operating conditions,
and trigger the response to thermal emergencies.

As in many embedded systems reliability is a major
concern [12], rollback recovery schemes use slack time to
increase system reliability. Slack time also is exploited by
voltage and frequency scaling schemes to lowering power
consumption and in turn, reducing on-chip temperature [13].
So some of low power and DTM techniques which use slack
time, have a significant negative impact on system reliability
[2]. We describe these thermal management schemes in Sec-
tion II. Since reduced supply voltage has negative impacts
on reliability [13], we should look for thermal management
techniques which do not scale operating voltage/frequency.

In this paper, we propose Schedule Swapping, a tech-
nique to manage temperature in distributed embedded sys-
tems while maintaining real-time constraints. This technique
leverages a full voltage swing, thus will not cause reliability
degradation. When the temperature of a processor exceeds a
predetermined threshold, it will swap its assigned tasks with
the coldest processor. We present a design time scheme that
is used to check whether the real-time constraints will be
satisfied after Schedule Swapping or not. This scheme also
determines the order in which the tasks’ data are transmitted
to meet all deadlines. To the best of our knowledge this is the
first thermal management technique presented for distributed
real-time embedded systems.

The rest of this paper is organized as follows: Section II
provides an overview on DTM techniques and limitations
of them. Section III presents our used task, system and



thermal models for distributed embedded system. Section IV
describes the basic idea and details of our proposed scheme.
The experimental results are presented in Section V. Finally,
Section VI concludes the paper.

II. A BRIEF REVIEW ON DTM TECHNIQUES

We can classify DTM techniques into several categories:
those that reduce power consumption ( [14], [10] and [15])
and those that try to balance the load and power ([16], [17]).
The first category contains the techniques, whose goal is to
reduce the power dissipation, such as:
• Clock Gating [14] stalls the clock to zero the dynamic

power consuming and let the processor to cool in
response to the thermal overload. However it has a
negative impact on performance and can cause missed
deadlines in real-time systems [18].

• Fetch Gating [10] stalls fetching instructions to lessen
the activity and power density in the pipeline when the
chip reaches a temperature threshold.

• Dynamic Voltage Scaling (DVS) [10] adjusts CPU volt-
age/frequency to reduce power dissipation in response
to the thermal situation. Despite this technique is effec-
tive at reducing power dissipation, and hence decreas-
ing temperature, it has some potential drawbacks. First,
lowering the supply voltage and frequency increase
the execution time of the tasks which may potentially
violate the timing constraints of system. Secondly,
lowering the supply voltage exacerbates noise immunity
and noise margin [13]. In the systems with a high
reliability requirement, DVS may not be an appropriate
choice to use.

• Architecture-level mechanisms [15] adapt micro-
architecture parameters, such as instruction window
size, fetch width and issue width, and get reduction
in on-chip temperature at the cost of performance
degradation.

The second class of DTM techniques contains those which
attempt to distribute workload and power. This approach
performs the load balancing at two different levels of gran-
ularity:
• Activity Migration [16] is a fine-grained example which

moves computation between replicated units on the
die. In this scheme, the units with high activity (such
as register file or issue window) replicated to avoid
hotspots. When one unit heats up, the computation will
transferred to the second unit allowing the first to turn
cold.

• Task Migration (TM) or Process Migration [17] is
a coarse-grained power balancing technique that was
proposed for multi-core platforms and MPSoCs. This
technique transfers the threads from the overheated
core to the cold cores periodically due to temperature
balancing of the cores. TM is not applicable to the sys-
tems which execute dependent tasks (e.g. task graphs).

This can be explained by these facts that (i) the target
processor may have no enough idle time to allot to the
migrated task, (ii) migrating a task can lead to increase
in schedule length and violation of deadline.

III. MODELS

A. Task Model

A task set T of t dependent periodic tasks is denoted by
T = {T1, T2, · · · , Tt}. Data dependencies between tasks can
be captured by a directed acyclic graph named task graph.
In the task graph, nodes represent tasks and directed edges
represent data dependencies among tasks. If Ti has data
dependency on Tj , an edge will connect Ti to Tj in task
graph. We can make a general assumption that all the tasks
have identical periods and deadlines [9].

B. System Model

We consider a distributed embedded system consists of
n processing elements (PEs) like processors, microproces-
sors, DSPs, FPGAs and ASICs. PEs are connected by
communication units (CUs). We denote the PEs by a set
P = {P1, P2, · · · , Pn}. After scheduling task graph and
allocation of each task to a particular computational note,
each PE Pi will be associated with a set of assigned tasks.

C. Thermal Model

Based on the known duality between heat transfer and
electrical phenomena, the temperature profile of a given task
is an exponential function of the form [1]:

T (t) = Ts × (1− e−t/RthCth) + Tinit × e−t/RthCth (1)

where T (t) is the temperature of the processor after the
task executes for t units of time, Ts is the steady state
temperature of task which processor might reach if the task
executes for a long time, Tinit is the initial temperature, and
Rth and Cth are thermal resistance and thermal conductance
respectively, which are processor specific constant parame-
ters. Thermal RC constant time characterizes the exponential
rise and fall in temperature.

The temperature behavior of a processor which executes a
sequence of tasks periodically, includes short-term tempera-
ture reactions and long-term ones. The former occurs within
each task graph period. As the task sequence repeats itself,
the temperature of processor at the end of period, elevates
as compared to the beginning of the period. It approaches to
its steady state after many periods repetition. In the steady
state, the thermal profile experiences a recurring pattern [6].
Figure 1 shows this long-term behavior.

IV. SCHEDULE SWAPPING SCHEME

This section presents our proposed scheme to manage the
temperature in distributed embedded systems.
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Temperature Behaviour of a Periodic Task Sequence

Figure 1: long-term temperature changes

A. Main Idea

According to the system model presented in Section III,
each of the PEs execute its assigned task periodically. Since
the circuit activity may vary across the tasks, which in
turn causes significant variations in their power dissipation
characteristics, a substantial difference between the thermal
behavior of processors has been experienced.

The phases required in our scheme for Schedule Swapping
between PEs are illustrated in Figure 2 and are as follows:
• Each processor reads its temperature sensor and broad-

cast the value to other PEs over their communication
units (e.g. common bus) periodically.

• Then each PE sort out all temperature values being
sent by other PEs. While the temperature values are
serialized over the communication link, they can be
sorted by insertion sort in O(n). When the temperature
value of a new PE is received, it will be inserted into
its correct position. Since insertion sort is an online
algorithm and can process the inputs in a serial fashion
[19], it is the best choice to be used in our technique.

• When the temperature of a processor exceeds a certain
threshold, it will negotiate with the coldest PE by
sending a swapping signal.

• In the next period, in addition to normal execution, data
transfer will be done. We named this period, Transfer
Period. After finishing the execution of each task Ti ∈
ATj , (where j is one of the involved PEs) in Transfer
Period, the data required by other PE to execute Ti in
the next period, will be sent to it.

• If the second hottest processor exceeds the temperature
threshold, its schedule will be swapped by the second
coldest processor and etc.

After completion of swapping the schedules, the overheated
PE begins to cool down and the cool PE starts to heat up.

Example: Schedule Swapping technique is explained with
the help of an example illustrated in Figure 2. In the period
i, P1 overheats and its scheduling will be swapped with the
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Figure 2: Different phases of Schedule Swapping between
PE P1 and PE p2.

scheduling of a cool PE, P2. P1 sends the swapping signal to
P2. In the period i+1, tasks’ data are transferred between P1

and P2. Finally, in the period i + 2 schedules are swapped;
P1 executes the tasks were assigned to P2 and vice versa.

Needing large amounts of data, some PEs may miss
the deadline if they use Schedule Swapping technique. We
present ESTF, a design time scheme to guarantee meeting
timing constraints in the Schedule Swapping technique. The
PEs that can assist in Schedule Swapping will be determined
at design time by the ESTF scheme. It will be explained in
the next subsection.

To save communication bandwidth and decrease the time
needed for swapping the schedules, the executable code of
tasks will reside in all PEs. A more effective solution is to
determine the potential candidates for Schedule Swapping
at design time. Many of embedded systems execute a set
of applications known at design time [20]. This provides
the opportunity to determine the thermal profile of tasks
and uncover the PEs which may be involved in Schedule
Swapping. Then we can only copy the executable code
of tasks which assigned to the potential candidate PEs, at
design time.

While this technique does not reduce operating volt-
age/frequency, it leaves the available slack time to be used by
rollback recovery and re-execution mechanisms. Dedicating
the slack time to re-execution, preserves fault tolerance
and system reliability. On the other hand, not reducing
voltage/frequency avoids the increase in the rate of transient
faults [13].

Not affecting the tasks execution time, our technique guar-
antees all the deadlines. The only potential risk of missing
a deadline, that may be associated with this technique, is
in data transfer phase. In the next subsection we discuss a
scheme to guarantee real-time constraints.
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Figure 3: Scheduling data transfer for two PEs involved in
Schedule Swapping bt ESTF scheme.

B. Satisfying Timing Constraints

As discussed in the previous subsection, data transferring
is the only phase that can potentially lead to deadline miss
if we do not consider timing constraints. In this subsection
we present a solution to guarantee meeting all deadlines in
Schedule Swapping scheme.

Let LDTTi be the longest time required by task Ti to
transmit its data through communication link. If the data
transfer between PEs can be scheduled at design time, the
deadline will be met and the Schedule Swapping can be
exploited at run time. We present a simple and effective
scheduling scheme for data transferring between two PEs
named Earliest Start Time First (ESTF). It is noteworthy
that we do not aim at introducing a new task scheduling; our
scheme will be performed after the tasks mapped to PEs and
task scheduling is done. Given the mapped and scheduled
task graph, ESTF scheme should be used for every two PEs.
It is as follows:

1) Two PEs, their assigned tasks, LDTT , start time and
finish time of each task are given as input.

2) Select the task which has the earliest start time in
scheduling (e.g. task Tk). If two tasks have an identical
start time, randomly select one of them.

3) After the finish time of task Tk in the scheduling, if
the communication link is idle, allot the link to Tk for
LDTTk units of time.

4) If any task remains, return to step 2.
If the data of each task is received before its start time in

next period, the whole tasks can be start to execute at their
specified time and the deadline will be met. Existing a task
which violates this condition, Schedule Swapping can not
be used for these two PEs. Figure 3 illustrates an example
of ESTF scheme. Tasks T1 and T4 have the earliest start
time; T1 is selected randomly to transmit its data first. Then
T4 and T2 block the link, respectively. After finish time of
T5, the link is occupied, so we should wait until the link
becomes idle and then allot the link to T5. Finally, T3 which
has the latest start time will occupy the link. As depicted in
this figure, the whole tasks will receive their required data
before their next execution time, and the Schedule Swapping
can be used for these two PEs.
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Figure 4: An example of scheduling data transfer which did
not use ESTF scheme and caused deadline miss.

The ESTF scheme gives highest priority to the tasks with
the earliest start time to transmit their data. The rationale
behind the ESTF is straightforward: the task which will
execute earlier, requires its input data earlier. We do not
claim that ESTF is the best or the only scheme, but it is
simple and effective. Suppose that we do not use ESTF and
another task is selected for transmitting data instead of T1

and T4. For instance, Figure 4 shows a scenario in which
task T2 is selected to transmit its data first, contrary to the
ESTF scheme. As shown in this figure, exploiting a scheme
different from ESTF causes the required data of T1, T3 and
T4 to arrive late and in turn deadline miss.

V. EXPERIMENTAL RESULTS

A. Simulation Setup

To setup a distributed system, compute the temperature
values and power dissipation, we use the following estab-
lished tools.

• For modeling a distributed embedded system, we use
TrueTime [21], a MATLAB/Simulink-based tool. True-
Time provides an infrastructure to simulate the behavior
of multitask real-time processors connected by a com-
munication network.

• We use HotSpot (version 5) [22] as our thermal sim-
ulator. HotSpot is based on the well-known duality
between heat transfer and electrical phenomena. This
duality can be exhibited by the fact that we can describe
both these phenomena by exactly the same differential
equations. HotSpot takes as input the power trace values
over time, the chip floorplan and the configuration
details of package.

• Power trace values must be supplied to the HotSpot, so
we need a power simulator. PTScalar [23] is a cycle-
accurate microarchitecture level power simulator that
takes both dynamic and leakage power consumption
into account. It is an extension of Simple-Scalar toolset
which models power dissipation at the 65nm node,
using a model like Wattch [24]. Furthermore, it models
the temperature and voltage dependency of leakage
power.
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Figure 5: General tool chain for simulation setup.

• We use the Embedded System Synthesis Benchmarks
Suite (E3S) as the task graphs. E3S has five benchmarks
in total which represents different applications. A hard
deadline is associated to each sink task. We also use
TGFF [25], which provides pseudo-random task graphs.

• As workloads, we use a set of benchmarks from the
MiBench [26], an embedded benchmark suite. These
benchmarks are selected from automative category
(qsort, bitcount, basicmath, susan), consumer category
(lame, jpeg), security category (sha), network category
(patricia, dijkstra) and telecomm category (fft, adpcm,
gsm).

To setup the experimental framework, we first configured
a distributed system in TrueTime, consisting of some compu-
tational nodes (PEs) and a communication infrastructure to
support communications among tasks and then implemented
the scheduled task graphs (of E3s and TGFF) on the nodes.
Afterwards, we assigned the applications of MiBench to the
tasks of task graphs randomly, and calculated the power dis-
sipation of them by PTscalar. We also coupled the TrueTime
with HotSpot thermal simulator to perform the temperature
simulation in parallel with task execution. The task execution
modeling and swapping of schedules is done by TrueTime.
Figure 5 shows the simulation setup.

Most of embedded processors do not posses modern
packages, heat sinks and heat spreaders [5]. To simulate
this lack, we set the parameters of HotSpot to the values
summarized in Table I [27].

Table I: HotSpot parameters for embedded processors.

Parameter Value
Die Thickness 0.15mm

Convection Capacitance 140J/K
Convection Resistance 1.5K/W - 4K/W
Heat Sink Thickness 1mm
Spreader Thickness 0.1mm

B. Results

Using the simulation tool chain, we first run each task
graph with randomly assigned workloads until it reaches to
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Figure 6: Peak temperature reduction by our technique for
different benchmarks.

Table II: The maximum and the average reduction in peak
temperature.

Peak Temperature Base Schedule Swapping Reduction
Average 92.99◦C 81.85◦C 11.13◦C

Maximum 116.53◦C 98.43◦C 18.1◦C

steady state temperature without using any thermal man-
agement technique. Afterwards, we repeated the simulations
and this time used Schedule Swapping technique. We only
report the results for 11 benchmarks consist of Office (3
benchmarks), Networking (4 benchmarks) and TGFF (4
benchmarks).

The simulation results are depicted in Figure 6. This figure
shows the peak temperature of different benchmarks for two
cases: when no thermal management is used (base), and
when Schedule Swapping is used. Our technique achieves a
peak temperature reduction up to 18.1◦C and 11.13◦C on
average. Note that by having many cold PEs and a few hot
PEs in a system, Schedule Swapping will demonstrate more
efficacy to reduce peak temperature. The peak temperature
reduction, the maximum peak temperature and the average of
peak temperature attained by Schedule Swapping is reported
in Table II.

VI. CONCLUSION

Reducing peak temperature of processor and maintaining
its high reliability are two major challenges in embedded
systems design. In this paper we have presented Schedule
Swapping, a technique to reduce peak temperature in dis-
tributed embedded systems while satisfying real-time con-
straints and preserving system reliability. In this technique,
when a processor overheats, its assigned tasks and schedule
will be swapped with the schedule of the coldest processor.
Also we have presented ESTF, an algorithm to understand
the feasibility of meeting all deadlines if Schedule Swapping
is used. This is a design time algorithm that should be used
for each two pairs of PEs to check the real-time constraints
in data transfer phase. ESTF determines the order in which



tasks’ data should be transferred to arrive at their destination
before the start of task execution. While our technique does
not reduce supply voltage and leaves slack time for fault
tolerance, it does not cause the system reliability to degrade.
The proposed technique has achieved a peak temperature
reduction as much as 18.1◦C and 11.13◦C on average.
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