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Abstract 

 
In this paper, an adaptive neural network multiple 

models sliding mode controller for robotic 
manipulators is presented. The proposed approach 
remedies the previous problems met in practical 
implementation of classical sliding mode controllers. 
Adaptive single-input single-output (SISO) RBF neural 
networks are used to calculate each element of the 
control gain vector; discontinuous part of control 
signal, in a classical sliding mode controller. By using 
the multiple models technique the nominal part of the 
control signal is constructed according to the most 
appropriate model at different environments. The key 
feature of this scheme is that prior knowledge of the 
system uncertainties is not required to guarantee the 
stability. Also the chattering phenomenon is 
completely eliminated. Moreover, a theoretical proof 
of the stability and convergence of the proposed 
scheme using Lyapunov method is presented. To 
demonstrate the effectiveness of the proposed 
approach, a practical situation in robot control is 
simulated. 
 
1. Introduction 
 

Robotic manipulators are highly nonlinear, highly 
time-varying and highly coupled. Moreover, there 
always exists uncertainty in the system model which 
cause unstable performance in the robotic system. 
Therefore, they are complex systems and in general 
very difficult to control. Robust control is a powerful 
tool to control complex systems [1]. The typical 
structure of a robust controller is composed of a 
nominal part, similar to a feedback linearization or 
inverse control law, and additional terms aimed at 
dealing with uncertainties. Almost all kinds of robust 
control schemes, including the classical sliding mode 
control [2], have been proposed in the field of robotic 
control during the past decades. Classical sliding mode 

controller design provides a systematic approach to the 
problem of maintaining stability in the face of 
modeling imprecision and uncertainty. 

Multiple models control strategy is another scheme 
to control the complex systems, such as robotic 
manipulators, [3], [4]. Because of uncertainties 
mentioned above, these systems operate in multiple 
environments which may change abruptly from one to 
another. Therefore, a good way to improve controller 
performance is to use multiple models control if 
models are approximately available for different 
environments [5]. The objective in multiple models 
controller is to determine the most appropriate model 
at any instant, using a suitable performance criterion 
based on the identification error, and to activate the 
corresponding controller. 

Although classical sliding mode control is a 
powerful scheme for nonlinear systems with 
uncertainty, such as robotic manipulators [1], this 
control scheme has important drawbacks limiting its 
practical applicability, such as chattering and large 
control authority. Moreover, in order to guarantee the 
stability of the sliding mode control systems, the 
boundary of the uncertainty has to be estimated. 

Recently, much research works have been done to 
use soft-computing methodologies such as artificial 
neural networks in order to improve the performance 
and remedy the problems met in practical 
implementation of sliding mode controllers [6]. The 
use of neural network (NN) for calculation of the 
equivalent term of a sliding mode controller (SMC) is 
proposed in [7]. In [8] two NNs in parallel are used to 
realize the equivalent control and corrective control 
terms of an SMC. This scheme is based on the fact that 
if the NN learns the equivalent control, the corrective 
term goes to zero and any difference between them is 
reflected as a nonzero corrective term. In [9], by 
adaptively estimating the bound of system uncertainty 
using a multi-input single-output RBF neural network, 
the requirement for having prior knowledge of 



uncertainty is eliminated. However, there is still 
chattering in the control input. In [10] the gains of an 
SMC are accepted as the weights of the NN and the 
weights are updated to minimize the defined cost 
function. The proposed adaptation scheme is MIT rule 
and there is no guarantee for convergence and stability. 

In this paper, the combination of neural network, 
sliding mode control and multiple models control are 
used for controlling the robotic manipulator with 
robust characteristics. This is accomplished in such a 
way that the multiple models approach is used to 
construct the equivalent control of the sliding mode 
control signal. The use of multiple models approach 
offers more robustness and reduces both the control 
gain authority and tracking error of the transient state. 
In other side, the discontinuous part of the control 
signals in the classical sliding mode controllers are 
substituted by single-input single-output RBF neural 
network functions, which are nonlinear and 
continuous, to eliminate the chattering phenomenon. 
To relax the requirements for the knowledge of upper 
bound of the uncertainties, the weights of the hidden 
layer of RBF neural networks are updated in an on-line 
manner to compensate the system uncertainties and to 
guarantee the stability of the overall system without 
having any prior knowledge of the system 
uncertainties. The adaptive law is designed based on 
the Lyapunov method and mathematical proof for the 
stability and convergence of the overall system is 
provided. 

The outline of this paper is as follows. Preliminaries 
about the model of the robotic manipulator, as partly 
known system, and the classical sliding mode 
controller for robotic manipulators are summarized in 
section II. The structure of classical multiple models 
approach is described in section III. The adaptive 
neural network multiple models sliding mode 
controller for robotic manipulators is presented in 
section IV. The simulation results are given in section 
V to demonstrate the effectiveness of the proposed 
control scheme. Finally, section VI presents some 
concluding remarks. 
 
2. Preliminaries 
 
2.1. Model or robotic manipulators 
 

In the absence of friction or other disturbances, the 
dynamic equation of an n-link rigid robotic 
manipulator system is described by the following 
second order nonlinear vector differential equation  

uG(q)q)qB(q,qM(q) =++ &&&&                   (1) 

where T
nqq ],...,[ 1=q  is an 1×n  vector of joint 

angular position, as shown is Fig. 1 for a two-link 
robot manipulator, T

nqq ],...,[ 1 &&& =q and T
nqq ],...,[ 1 &&&&&& =q  

are 1×n  vectors of corresponding velocity and 
acceleration, u  is an 1×n  vector of applied joint 
torques (control inputs), M(q)  is an nn×  inertial 
matrix, )qB(q, &  is an nn×  matrix of Coriolis and 
centrifugal forces and G(q)  is an 1×n  gravity vector. 
The inertial matrix M(q)  is symmetric and positive 
definite. It is also bounded as a function of q : 

II 21 µµ ≤≤ M(q) . )qB(q,(q)M && 2−  is skew symmetric 

matrix, that is, 0]2[ =− xx )qB(q,(q)MT && , where x  is 
an 1×n  nonzero vector. 

 
Fig.1  Two-link robot manipulator. 

It is assumed that a robotic manipulator, as is 
described by (1), has some known parts and some 
unknowns and therefore, there exist uncertainty in the 
system model. Thus M(q) , )qB(q, &  and G(q)  can be 
described as 

                    M(q)(q)MM(q) ∆+= ˆ  

                    )qB(q,)q(q,B)qB(q, &&& ∆+= ˆ  

G(q)(q)GG(q) ∆+= ˆ                               (2) 

where (q)M̂ , )q(q,B &ˆ  and (q)Ĝ are the known parts or 
estimated parameters, and M(q)∆ , )qB(q, &∆  and 
G(q)∆  are the unknown parts. For simplification in 

notation, we avoid writing the variables in the 
parentheses of the above matrices and vectors from 
now on. 
 
2.2. Classical sliding mode controller 
 

In the design of sliding mode controller for robotic 
manipulators, the control objective is to drive the joint 



position q  to the desired position dq . So by defining 
the tracking error to be in the following form 

dqqe −=                                     (3) 

the sliding surface can be written as  

λees += &                                     (4) 

where ],...,,...,[ 1 nidiag λλλ=λ , in which iλ  is a 
positive constant. The control objective can now be 
achieved by choosing the control input so that the 
sliding surface satisfies the following sufficient 
condition 

iii ss
dt
d η−≤2

2
1                               (5) 

where iη  is a positive constant. Equation (5) indicates 
that the energy of s  should decay as long as s  is not 
zero. To set up the control u , define the reference 
states to be 

                   λeqsqq dr −=−= &&&  
eλqsqq dr &&&&&&&& −=−=                             (6) 

Now the control input u  can be chosen to be in the 
following form 

                  )sgn(ˆ sKAsuu −−=  

GqBqMu rr
ˆˆˆˆ ++= &&&                              (7) 

where ],...,,...,[ 11 nnii kkkdiag=K  is a diagonal 
positive definite matrix in which iik 's are positive 
constants and ],...,,...,[ 1 ni aaadiag=A  is a diagonal 
positive definite matrix in which ia 's are also positive 
constants. Putting (7) into (1) leads to 

)sgn(sK∆fA)s(BsM −=++&                (8) 

where ∆Gq∆Bq∆M∆f rr ++= &&& . It can be proved 
that by choosing K such that 

boundiii fk ∆≥                                (9) 

where 
boundif∆  is the boundary of if∆ , the overall 

system is asymptotically stable. It has been proven 
([2]) that by considering the Lyapunov function 
candidate as 

MssTV
2
1

=                              (10) 

where 
boundif∆  is the boundary of if∆ , the overall 

system is asymptotically stable. Therefore the decay of 
the energy of s , as long as 0≠s , is guaranteed and 
the sufficient condition in (5) is satisfied. 
 
3. Classical multiple models control 
 

As stated before, the multiple models control 
strategy is to determine the best model for the current 
environment at every instant and to apply the 
appropriate control signal correspondingly. Therefore 
it can be divided into two separated phases; 
identification and control. 

 

Fig.2  Block diagram of classical multiple models 
controller. 

 
3.1. Identification 
 

Identification part is composed of predefined 
models which cover different environments of the 
plant and decision mechanism in order to decide about 
which model is the closest one to the plant. Many 
techniques are used in identify the best model in 
multiple models controller [3]-[5]. Classical types of 
these controllers work based on the switching. 
Switching action is determined in decision mechanism 
part and in which the model with the smallest error, 
according to some criterion, is chosen rapidly. The 
structure of classical multiple models controller is 
presented in Fig. 1. 1M , 2M , … , NM  are N  
models which are used in parallel with the plant. y  
And nŷ  are the output of the plant and the nth model, 
respectively, and u  is control signal or input of plant. 
There are many options to choose appropriate 
criterions or performance indices, and different types 
are introduced in literatures [3]-[5]. One specific 
performance index is given below 
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       0,0 >≥ κba  

where 

)(ˆ)()( tytyte nn ==                          (12) 

a  and b  are the weighting factors on the 
instantaneous measure and the long term accuracy. κ  
is a forgetting factor which makes previous measures 
have different weightings and as time goes on, old 
values have less effect on the result. These parameters 
plays key role to have quick response or slow one. By 
choosing larger value for ba  and κ , more quick 
response can be achieved. But it leads to unwanted 
switching in the presence of disturbances and 
deteriorates the system performance. In other hand 
smaller value for them reduces unwanted switching but 
makes slower response for environment changing. 
Therefore a good option is a trade-off between two 
characteristics. 
 
3.2. Control 
 

The control problem in the multiple models 
technique is preformed in two steps: 

• Generation of the basic control signal for 
each model separately 

• Switching to the best controller according to 
the selected model 

In classical multiple models approach, as seen in 
Fig. 2, N  separated controllers, nC  for Nn ,,1K=  , 
are designed for predefined models so that the control 
objective is satisfied for each of them. The output of 
nth controller is denoted by nu  and the final control, 
u , determined among N  calculated control signals 
based on the best selected model in the control 
mechanism at each instant of time. 
 
4. Adaptive Neural Network Multiple 
Models Sliding Model Control 
 

There are major disadvantages in designing the 
classical sliding mode controllers. First, because of the 
control actions which are discontinuous across s , 
there is chattering in a boundary of the surface s . Such 
high frequency switching (chattering) might excite 
unmodeled dynamics and impose undue wear and tear 
on the actuators, so the control law would not be 
considered acceptable. Second, the prior knowledge of 
the boundary of uncertainty is required in 
compensators. If boundary is unknown, a large value 

has to be applied to the gain of discontinuous part of 
control signal and this large control gain may intensify 
the chattering on the sliding surface. 

In this section, an adaptive neural network multiple 
models sliding mode controller, to avoid the 
aforementioned problems, has been proposed. For this 
purpose, first adaptive single-input single-output 
(SISO) RBF neural networks, as continuous function, 
is applied to calculate each elements of )sgn(sK  in 
the control law (7). The control input is written as 

KAsuu −−= ˆ                             (13) 

where T
ni kkk ],...,,...,[ 1=K  is an 1×n  vector in which 

ik  is the output of the ith RBF neural network. The 
RBF neural networks have the following structure 

)( ik
T

ki sk
ii

Φ=W                           (14) 

where 
ikW is the 1×m  vector of the output layer 

weights and m  is the number of nodes in the hidden 
layer and T

ikikikik ssss m

i

j

iii
)](),...,(),...,([)( 1 ϕϕϕ=Φ  is 

the 1×m  vector of outputs of the hidden layer nodes, 
whose elements (basis functions) are chosen as 
Gaussian-type function, expressed by 

)2exp()( 22 jjj

i iiiiik ss σµβϕ −−=              (15) 

where j

iµ  and j

iσ  are the center and variance of the 
jth basis function of the ith RBFN, respectively and iβ  
is a positive constant. 

ikW is chosen as the parameter to 
be updated and therefore is called the parameter 
vector, and )( ik s

i
Φ  is called the basis function vector 

which can be regarded as the weight of the parameter 
vector. 

A well-known problem in adaptive control is the 
poor transient response which is observed when 
adaptation is initiated after an abrupt change. Such 
abrupt changes frequently occur in the practical 
situations in robotic manipulators. As mentioned, a 
good way to improve controller performance of such 
systems is to use multiple models control if models are 
approximately available for different environments. 
Therefore the multiple models technique is used to 
construct the equivalent term û  in the control law 
(13). The control block diagram of the proposed 
architecture is shown in Fig. 3, where the PD block 
indicates the computation of λ+dtd  and the input of 
each RBF network is is  and the corresponding output 
is ik . 



 

Fig.3  Adaptive neural network multiple models sliding 
mode control of robotic manipulator. 

1M , 2M , … , NM  are estimated models in 
different environment of robotic action which is used 
in parallel with the plant. In other words, nM̂ , nB̂  and 

nĜ  , for Nn ,,1 K= , are the estimated parameters of 
the nth environment , and the unknown parts of the 
plant in each environment is defined as 

                       MM∆M nn −= ˆ  

                       BB∆B nn −= ˆ  

GG∆G nn −= ˆ           Nn ,,1K=      (16) 

Moreover q  and nq̂  are the output of the plant and 
nth model, respectively. nû  , for Nn ,,1 K= , is the 
output of nth local controller corresponding to nth 
model which is defined as 

nnnn GqBqMu rr
ˆˆˆˆ ++= &&&                   (17) 

In identification mechanism part, the performance 
index is selected as 
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nn ee  

0,0 >≥ κba                                                   (18) 

where 

)(ˆ)()(ˆ ttt nn qqe −=                        (19) 

Since we use blending instead of switching between 
each controller , as seen in Fig. 3, to achieve 
continuous control signal, the control signal is written 
by 

KAsuu −−= ∑
=

N

n
nn

1

ˆα                       (20) 

where blending coefficient nα  is defined as 

∑
=

−

−

= N

n

tJ

tJ

n
n

n

e

et

1

)(

)(

22

22

)(
δ

δ

α                        (21) 

The soft-max transforms the performance index using 
exponential function and then normalize these values 
so that nα 's have the property to lie between 0 and 1 , 

and  1
1

=∑
=

N

n
nα . 

In continue, an adaptive law is designed to 
guarantee that ik 's can compensate the system 
uncertainties. Now putting (20) into (1) leads to 

K∆fsA)(BsM −++−=&                 (22) 

where ∑
=

=
N

n
nn

1
∆f∆f α  in which 

nnnn ∆Gq∆Bq∆M∆f rr ++= &&& . It is proved that the 
RBF neural networks are universal approximators if 
their basis functions are chosen as a scaled version of 
Gaussian functions, which means that these neural 
networks are capable of approximating any real 
continuous function on a compact set to arbitrary 
accuracy [11]. 

Now, defining 
idkW  so that )( ik

T
ki sk

iid
Φ=W  is the 

optimal compensation for if∆ , according to the 
property of universal approximation of RBF neural 
networks, there exists 0>iδ  satisfying 

iik
T

ki sf
iid

δ≤Φ−∆ )(W                   (23) 

where iδ  is arbitrary and can be chosen as small as 
possible. Defining 

idii kkk WWW −=
~                          (24) 

It can be shown that by choosing the adaptive law as 

)(~
ikik ss

ii
Φ=W&                           (25) 

the overall system is asymptotically stable with respect 
to s  and the actual joint angular positions converge to 
the desired ones. 

Proof: Choose the Lyapunov candidate as 
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i
k

T
k

T
ii

V
1

~~
2
1

2
1 WWMss                 (26) 

where M  is symmetric positive matrix and 
0~~

>
ii k

T
k WW , therefore V  is positive definite. Now 



Consider the derivative of V , given by 
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Moreover, since the adaptive law in (17) is chosen as 
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From (23), there exist 

                         iik
T

ki sf
ii

δ≤Φ−∆ )(W  

where iδ  can be chosen as small as possible. Now by 
assuming 

iiiik
T

ki ssf
ii

ρδ ≤≤Φ−∆ )(W             (28) 

where 10 << iρ , the second term at the right side of 
(27) satisfies 

                22)]([ iiiiik
T

kii sssfs
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ρρ =≤Φ−∆ W  

Therefore 
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Now by simply choosing iia ρ>  

0)(
1

2 ≤−≤ ∑
=

n

i
iii saV ρ&                       (29) 

In (29) since 0)( <− ii aρ , 0=V&  only when 0=is . 
Thus, the overall system with the adaptive law in (25) 
is asymptotically stable. In other words 
 

0)(limlim =+=
∞→∞→

λees &
tt

                     (30) 

or equivalently 

                     dqqe =⇒=
∞→∞→ tt

lim0lim  

dqqe &&& =⇒=
∞→∞→ tt

lim0lim                        (31) 

Therefore, it is proved that the adaptive multiple 
models sliding mode control input (20) drives the 
actual joint positions to their desired values. Q.E.D. 
 
5. Simulation 
 

In this section, the proposed adaptive multiple 
models sliding mode controller is used on a two-link 
robotic manipulator, whose parameter matrices are as 
follows [12] 
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1211

MM
MM

M(q)  , 
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)qB(q, &  , 
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              22132
2

23211 cos)()( qllmmlmmM +++=  

 22132
2

232
2

132112 cos)(2)()( qllmmlmmlmmmM ++++++=  
                                   2112 MM =  

                              2
23222 )( lmmM +=  

                     22213211 sin)(2 qqllmmB &+−=  
                      22213212 sin)( qqllmmB &+−=  
                       21213221 sin)( qqllmmB &+=  



 
Fig.4  Tracking of joint angles 1 and 2 (In this figure, the 

obtained trajectory coincides with the desired one). 

 
Fig.5  Sliding surface of joints 1 and 2. 

)cos()(cos)( 21232113211 qqglmmqglmmmG +++++=  
                     )cos()( 212322 qqglmmG ++=  

where 1m  and 2m  are the masses, and 1l  and 2l  are 
the lengths of the links 1 and 2, respectively. The 
values of these parameter are chosen as kgm 21 = , 

kgm 12 = , ml 21 =  and ml 12 = . 3m  represents the 
mass of the load at the end of the link 2. The situation 
that is simulated is as following. The manipulator is 
expected to take a load from position two at 

RadT]2,1[  to position one at RadT]1,5.0[  
repeatedly. In the first stage, the manipulator moves 
from position 1 to the position 2 along a predefined 
trajectory during 2 sec. It stays there for 1 sec. to take 
the load kgm 23 =  and start to move from position 2 
to position 1 at 3=t sec. It puts the load in position 1 
at 6=t sec. and repeats the above actions. 

 

Fig.6  Control gains of joints 1 and 2  

 
Fig.7  Tracking errors of joint angles 1 and 2. 

In this simulation, two models are selected for the 
situation of 03 =m  and kgm 23 = , i.e. 2=N . Each 
model is estimated by applying a factor to the 
corresponding parameter matrices of the original 
system in each environment to count uncertainties, i.e., 

GG 85.0ˆ =n , BB 8.0ˆ =n , 1111 9.0ˆ MM n = , 

1212 9.0ˆ MM n = , 2121 9.0ˆ MM n =  and 2222
ˆ MM n =  for 

2,1=n , using 03 =m  and kgm 23 =  respectively. 
Parameters of identification part is chosen as 1=ba , 

8=κ  and 01.0=δ . The control input u  is chosen as 
in (20), where ]50,50[diag=A , ]10,10[diag=λ  and 
each element of K  is constructed by an RBF neural 
network with 10 nodes in its hidden layer. The initial 
parameters of each RBF neural network are evaluated 
by gradient descent algorithm to approximate a 
continuous quasi-signum function. 



 

Fig.8  Blending coefficient of control action. 

The simulation results are shown in Fig. 4 - Fig. 9. 
As seen in Fig. 4, the joint angles track the desired 
trajectories and the proposed control scheme drives the 
robotic manipulator to its desired positions. Moreover, 
there is no chattering in the sliding surface as shown in 
Fig. 5, and also the values of K  converge to constant 
in the steady-state as is shown in Fig. 6. Also Fig. 7 
shows that the tracking errors converge to zero. 
Finally, Fig. 8 shows the blending coefficients of 
control action. 
 
6. Conclusion 
 

In this paper an adaptive multiple models sliding 
mode controller using RBF neural network is proposed 
for robotic manipulators. The discontinuous parts of 
the classical sliding mode controller are replaced by 
SISO RBF neural networks, which are nonlinear and 
continuous, to avoid the chattering. The weights of the 
output layer of RBF neural networks are updated in an 
on-line manner to compensate the system uncertainties 
and the system stability without any prior knowledge 
of the system uncertainties is guaranteed. The 
equivalent control term of control signal is constructed 
by blending the local control action according to the 
most appropriate model at any environment. In this 
way the tracking errors of the transient state is reduced 
considerably. Since the RBF neural networks which 
are used in the controller are SISO systems, therefore 
the learning process is simple compared to that of 
multi-input systems developed previously. Also the 
design and implementation of the controller is 
simplified. Moreover, the stability and convergence of 
the overall system are proved by the Lyapunov 
method. The simulation results demonstrate that the 
proposed adaptive multiple model sliding mode control 
scheme, as proved theoretically, is a stable control 

scheme for robotic manipulators  and works well in 
complicated situations 
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