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Abstract—In this paper, an adaptive fuzzy sliding mode 

controller using multiple models approach is presented. By 

using the multiple models technique the nominal part of the 

control signal is constructed according to the most appropriate 

model at different environments. Adaptive single-input single-

output (SISO) fuzzy system is used to approximate the 

discontinuous part of control signal; control gain, in a classical 

sliding mode controller. The key feature of this scheme is that 

prior knowledge of the system uncertainties is not required to 

guarantee the stability. Also the chattering phenomenon in 

sliding mode control is alleviated and steady tracking error is 

eliminated. Moreover, a theoretical proof of the stability and 

convergence of the proposed scheme using Lyapunov method is 

presented. 

I. INTRODUCTION

Complex systems such as robotic manipulators, because of 

uncertainties in their structures, are in general very difficult 

in control. Theses systems conclude uncertainties due to fault 

in the system, sensor and actuator failure, external 

disturbance and change in system parameter. A powerful 

scheme to control the complex systems is multiple models 

control strategy [3], [4]. Because these systems operate in 

multiple environments which may change abruptly from one 

to another, therefore, a good way to improve controller 

performance is to use multiple models control if models are 

approximately available for different environments [5]. The 

objective in multiple models controller is to determine the 

most appropriate model at any instant, using a suitable 

performance criterion based on the identification error, and 

to activate the corresponding controller. 

Classical sliding mode controller design provides a 

systematic approach to the problem of maintaining stability 

in the face of modeling imprecision and uncertainty. This 

control scheme utilizes a high speed switching control law to 

drive the nonlinear predefined state trajectory onto a 

specified surface, to attain the conventional goals of control 

such as stabilization and tracking. However, this control 

scheme has important drawbacks limiting its practical 

applicability, such as chattering and large control authority. 

Moreover, in order to guarantee the stability of the sliding 

mode control systems, the boundary of the uncertainty has to 

be estimated. However, the estimate of the boundary is 

difficult to know, thus a conservative control law is selected 

which deteriorates the system performance. 

Recently, much research has been done to use fuzzy logic 

in order to improve the performance and alleviate the 

problems met in practical implementation of sliding mode 

controllers [6]. Also various fuzzy sliding mode controllers 

have been proposed for robotic manipulators. These works 

can be divided into two different types. In the first type of 

fuzzy sliding mode controller, it is assumed that the model of 

robotic manipulator is totally unknown. For instance in [7] 

and [8], fuzzy systems are used to implement the system 

dynamics as well as the control gain. In the second type of 

fuzzy sliding mode controller, it is assumed that the model of 

robotic manipulator is partly known with the analysis of the 

physical properties of the system. Efforts are contributed to 

the construction of the control gain [9] and [10].  

In this paper, adaptive sliding mode control with the 

combination of fuzzy system and multiple models control are 

used to control the robotic manipulators. The multiple 

models approach is used to construct the equivalent control 

of the sliding mode control signal. The use of multiple 

models approach offers more robustness and reduces both 

the control gain authority and tracking error of the transient 

state. In other side, the discontinuous part of the control 

signals in the classical sliding mode controllers are 

substituted by SISO fuzzy systems to eliminate the chattering 

phenomenon. Also the centers of membership functions in 

the consequence part of the fuzzy systems are updated in an 

on-line manner to compensate the system uncertainties and to 

guarantee the stability of the overall system without having 

any prior knowledge of the system uncertainties. The 

adaptive law is designed based on the Lyapunov method and 

mathematical proof for the stability and convergence of the 

overall system is provided. 

The rest of this paper is organized as follows. Classical 

sliding mode controller for robotic manipulators is 

summarized in section II. The structure of classical multiple 

models approach is described in section III. The adaptive 

fuzzy sliding mode controller using multiple models 

approach for robotic manipulators is presented in section IV. 

The simulation results are given in section V to demonstrate 

the effectiveness of the proposed control scheme. Finally, 

section VI presents some concluding remarks. 

II. CLASSICAL SLIDING MODE CONTROL FOR ROBOTIC 

MANIPULATORS

This section briefly reviews the basic concepts of classical 

sliding mode control for robotic manipulators.  

A. Model or Robotic Manipulators 

The dynamic equation of an n-link rigid robotic 

manipulator system is described by the following second 

order nonlinear vector differential equation  

uG(q)q)qB(q,qM(q)           (1) 
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where T

nqq ],...,[ 1q  is an 1n  vector of joint angular 

position, q  and q  are 1n  vectors of corresponding 

velocity and acceleration, u  is an 1n  vector of applied 

joint torques (control inputs), M(q)  is an nn  inertial 

matrix, )qB(q,  is an nn  matrix of Coriolis and centrifugal 

forces and G(q)  is an 1n  gravity vector. The inertial 

matrix M(q)  is symmetric and positive definite. It is 

assumed that a robotic manipulator, as is described by (1), 

has some known parts and some unknowns and therefore, 

there exist uncertainty in the system model. Thus M(q) ,

)qB(q,  and G(q)  can be described as 

M(q)(q)MM(q) ˆ

)qB(q,)q(q,B)qB(q, ˆ

G(q)(q)GG(q) ˆ              (2) 

where (q)M̂ , )q(q,B̂ and (q)Ĝ are the known parts or 

estimated parameters, and M(q) , )qB(q,  and G(q)  are 

the unknown parts. For simplification in notation, we avoid 

writing the variables in the parentheses of the above matrices 

and vectors from now on. 

B. Classical Sliding Mode Control for Robot Manipulator 

In the design of sliding mode controller for robotic 

manipulators, the control objective is to drive the joint 

position q  to the desired position 
dq . So by defining the 

tracking error to be in the following form 

dqqe                  (3) 

the sliding surface can be written as  

ees                  (4) 

where ],...,,...,[ 1 nidiag , in which i  is a positive 

constant. The control objective can now be achieved by 

choosing the control input so that the sliding surface satisfies 

the following sufficient condition 

iii ss
dt

d 2

2

1
              (5) 

where i  is a positive constant. Equation (5) indicates that 

the energy of s  should decay as long as s  is not zero. To set 

up the control u , define the reference states to be 

eqsqq dr

eqsqq dr              (6) 

Now the control input u  can be chosen to be in the 

following form 

)sgn(ˆ sKAsuu

GqBqMu rr
ˆˆˆˆ              (7) 

where ],...,,...,[ 11 nnii kkkdiagK  is a diagonal positive 

definite matrix in which iik 's are positive constants and 

],...,,...,[ 1 ni aaadiagA  is a diagonal positive definite 

matrix in which ia 's are also positive constants. Putting (7) 

into (1) leads to 

)sgn(sKfA)s(BsM          (8) 

where GqBqMf rr . It has been proven ([2]) 

that by considering the Lyapunov function candidate as 

Mss
T

V
2

1
                (9) 

and choosing K such that 

boundiii fk                 (10) 

where 
boundif  is the boundary of if , the overall system 

is asymptotically stable. Therefore the decay of the energy of 

s , as long as 0s , is guaranteed and the sufficient 

condition in (5) is satisfied. 

III. CLASSICAL MULTIPLE MODELS CONTROL

As stated before, the multiple models control strategy is to 

determine the best model for the current environment at 

every instant and to apply the appropriate control signal 

correspondingly. Therefore it can be divided into two 

separated phases; identification and control. 

A. Identification 

Identification part is composed of predefined models 

which cover different environments of the plant and decision 

mechanism in order to decide about which model is the 

closest one to the plant. Many techniques are used in identify 

the best model in multiple models controller [3]-[5]. 

Classical types of these controllers work based on the 

switching. Switching action is determined in decision 

mechanism part and in which the model with the smallest 

error, according to some criterion, is chosen rapidly. If y

and nŷ  is considered as the output of the plant and the nth 

model, respectively, One specific performance index is 

chosen as follow 

t

n
t

nn deebteatJ
0

2)(2
)()()(       (11) 

0,0 ba

where 

)(ˆ)()( tytyte nn              (12) 

a  and b  are the weighting factors on the instantaneous 

measure and the long term accuracy.  is a forgetting factor 

which makes previous measures have different weightings 

and as time goes on, old values have less effect on the result.  

B. Control 

The control problem in the multiple models technique is 

preformed in two steps: generation of the basic control signal 

for each model separately and switching to the best controller 

IEEE ICEIS 2006, April 22-23, Islamabad

408



according to the selected model. In classical multiple models 

approach N  separated controllers are designed for 

predefined models so that the control objective is satisfied 

for each of them. The final control is determined among N

calculated control signals based on the best selected model in 

the control mechanism at each instant of time. 

IV. ADAPTIVE FUZZY SLIDING MODE CONTROL USING 

MULTIPLE MODELS APPROACH

There are major disadvantages in designing the classical 

sliding mode controllers. First, because of the control actions 

which are discontinuous across s , there is chattering in a 

boundary of the surface s . Such high frequency switching 

(chattering) might excite unmodeled dynamics and impose 

undue wear and tear on the actuators, so the control law 

would not be considered acceptable. Second, the prior 

knowledge of the boundary of uncertainty is required in 

compensators. If boundary is unknown, a large value has to 

be applied to the gain of discontinuous part of control signal 

and this large control gain may intensify the chattering on the 

sliding surface. 

In this section, an adaptive fuzzy sliding mode controller 

using multiple models approach has been proposed to avoid 

the aforementioned problems. For this purpose, first adaptive 

SISO fuzzy system, as continuous function, is applied to 

calculate each elements of control gain )sgn(sK  in the 

control law (7). The control input is written as 

KAsuu ˆ                (13) 

where T

ni kkk ],...,,...,[ 1K  is an 1n  vector in which ik  is 

the output of the ith fuzzy system. 

Because the control gain in (7) has the sane sign as is ,

therefore ik  should have the same sign as is . When is  is 

large, it is expected that ik  is also large and when is  is 

small, ik  is small to avoid chattering. This idea similar to 

applying the function (.)sat . The difference is that the 

control gain varies along with the sliding surface all the time. 

In addition, the adaptive law is designed to guarantee that the 

ik  can compensate the system uncertainty. Thus, the fuzzy 

system for ik  should be SISO, with is  as the input. 

There are usually four basic parts in a fuzzy system; 

fuzzification, fuzzy rule base, fuzzy inference engine and 

defuzzification. The rules in the rule base are in the 

following format: 

IF  is  is m

iA  , THEN  ik  is m

iB          (14) 

where m

iA  and m

iB  are fuzzy sets. In this paper, it is chosen 

that both is  and ik  have the same kind of membership 

functions : NB , NM , NS, ZE, PS, PM, PB, where N stands 

for negative, P positive, B big, M medium, S small and ZE

zero. They are all Gaussian membership functions defined as 

2

exp)( i
iA

x
x           (15) 

where "A" represents one of the fuzzy sets NB, … , PB and 

ix  represents is  or ik .  is a positive constant.  and 

are the center and the width of "A" respectively. Although 

the membership functions for is and ik  have the same titles, 

correspondingly, the values of the center and the width of the 

membership function with a same title for is  and ik  are 

different. The parameters of ik  the membership functions of 

is  are pre-defined, while those of ik  are updated on-line. 

Based of the above discussions and the definitions of the 

input and output membership functions, the rule base can be 

decided as follow 

IF  is  is NB , THEN  ik  is NB

IF  is  is NM , THEN  ik  is NM

IF  is  is NS , THEN  ik  is NS

IF  is  is ZE , THEN  ik  is ZE

IF  is  is PS , THEN  ik  is PS

IF  is  is PM , THEN  ik  is PM

IF  is  is PB , THEN  ik  is PB         (16) 

By choosing singleton fuzzification, center average 

defuzzification, Mamdani implication in the rule base and 

product inference engine, ik  can be written as 

)(

)(

)(

1

1
ik

T

kM

m

iA

M

m

iA

m

k

i s

s

s

k
ii

m

m
i

        (17) 

where TM

k

m

kkk iiii
],...,,...,[ 1 is the 1m  vector. Also 

T

ikikikik ssss
M

i

m

iii
)](),...,(),...,([)(

1  is the 1m  vector 

where 
M

m
iAiAik sss mm

m

i
1

)()()( .
ik  is chosen as the 

parameter to be updated and therefore is called the parameter 

vector, and )( ik s
i

 can be regarded as the weight of the 

parameter vector. 

As stated, a good way to improve controller performance 

of complex systems with abrupt change is to use multiple 

models control if models are approximately available for 

different environments. Therefore the multiple models 

technique is used to construct the equivalent term û  in the 

control law (13). The control block diagram of the proposed 

architecture is shown in Fig. 1, where the input of each fuzzy 

system is is  and the corresponding output is ik .

1M , 2M , … , NM  are estimated models in different 

environment of robotic action which is used in parallel with 

the plant. In other words, nM̂ , nB̂  and nĜ  , for 

Nn ,,1 , are the estimated parameters of the nth 

environment , and the unknown parts of the plant in each 

environment is defined as 
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Fig.1  Adaptive fuzzy sliding mode control using multiple models approach

MMM nn
ˆ

BBB nn
ˆ

GGG nn
ˆ           Nn ,,1         (18) 

Moreover q  and nq̂  are the output of the plant and nth 

model, respectively. nû  , for Nn ,,1 , is the output of 

nth local controller corresponding to nth model which is 

defined as 

nnnn GqBqMu rr
ˆˆˆˆ             (19) 

In identification mechanism part, the performance index is 

selected as 

t t

n debtatJ
0

)(
)(ˆ)(ˆ)( nn ee       (20) 

0,0 ba

where 

)(ˆ)()(ˆ ttt nn qqe               (21) 

Since we use blending instead of switching between each 

controller , as seen in Fig. 2, to achieve continuous control 

signal, the control signal is written by 

KAsuu
N

n
nn

1

ˆ              (22) 

where blending coefficient n  is defined as 

N

n

tJ

tJ

n

n

n

e

e
t

1

)(

)(

22

22

)(              (23) 

The transform uses exponential function and then normalize 

these values so that n 's have the property to lie between 0 

and 1 , and  1
1

N

n

n .

In continue, an adaptive law is designed to guarantee 

that ik 's can compensate the system uncertainties. Now 

putting (22) into (1) leads to 

KfsA)(BsM           (24) 

where 
N

n

nn

1

ff  in which

nnnn GqBqMf rr .

Now, defining 
idk  so that )( ik

T

ki sk
iid

 is the optimal 

compensation for if , according to Wang's theorem [1], 

there exists 0i  satisfying 

iik

T

ki sf
iid

)(             (25) 

where i  is arbitrary and can be chosen as small as possible. 

Defining 

idii kkk

~
               (26) 

It can be shown that by choosing the adaptive law as 

)(
~

ikik ss
ii

               (27) 

the overall system is asymptotically stable with respect to s

and the actual joint angular positions converge to the desired 

ones. 

Proof: Choose the Lyapunov candidate as 

n

i

k

T

k

T

ii
V

1

~~

2

1

2

1
Mss            (28) 

where M  is symmetric positive matrix and 0
~~

ii k

T

k ,

therefore V  is positive definite. Now Consider the derivative 

of V , given by 

n

i

k

T

kk

T

k

TTT

iiii
V

1

]
~~~~

[
2

1
][

2

1
sMssMsMss

n

i

k

T

k

TT

ii
1

~~
2

2

1
]2[

2

1
sMssMs

n

i

k

T

k

T

ii
1

~~
][ BssMs

n

i

k

T

k

T

ii
1

~~
]([ BsKfA)sBs

n

i
k

T

k

TT

ii
1

~~
][ KfsAss

n

i

k

T

k

n

i

iii

T

ii
kfs

11

~~
])[(Ass      (29) 

Since )()(
~

ik

T

kik

T

ki ssk
iidii

, then 

n

i

ik

T

kik

T

kii

T
ssfsV

iidii
1

))])()(
~

([(Ass

      
n

i

k

T

k ii
1

~~

n

i

ik

T

kii

T
sfs

iid
1

)])([(Ass

       
n

i

k

T

k

n

i

ik

T

ki iiii
ss

11

~~
))(

~
(
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Fig.2  Tracking of joint angles 1 and 2 

Fig.3  Sliding surface of joints 1 and 2. 

Fig.4  Control gains of joints 1 and 2 (outputs of fuzzy systems).

Fig.5  Tracking errors of joint angles 1 and 2. 

n

i

ik

T

kii

T
sfs

iid
1

)])([(Ass

       
n

i

kiki

T

k iii
ss

1

]
~

))([
~

         (30) 

Moreover, since the adaptive law in (27) is chosen as 

)(
~

ikik ss
ii

, then 

n

i

ik

T

kii

T
sfsV

iid
1

)])([(Ass       (31) 

From (25), there exist 

iik

T

ki sf
iid

)(             (32) 

where i  can be chosen as small as possible. By assuming 

iiiik

T

ki ssf
iid

)(          (33) 

where 10 i , the second term at the right side of (31) 

satisfies 

22
)]([ iiiiik

T

kii sssfs
iid

Therefore 

n

i

ii

T
sV

1

2
Ass

n

i

iiii ssa
1

22
)(             (34) 

Now by simply choosing iia

0)(
1

2
n

i

iii saV             (35) 

and 0V  only when 0is . Thus, the overall system with 

the adaptive law in (27) is asymptotically stable with respect 

to s . In other words 

0)(limlim ees
tt

            (36) 

or equivalently 

0lim&0lim ee
tt

            (37) 

Therefore, it is proved that the adaptive multiple models 

sliding mode control input (22) drives the actual joint 

positions to their desired values.  Q.E.D. 

V. SIMULATION RESULTS

In this section, the proposed adaptive multiple models 

sliding mode controller is used on a two-link robotic 

manipulator, whose parameter matrices are as follows 

2221

1211

MM

MM
M(q)
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Fig.6  Blending coefficients of control action.

where 

22132

2

23211 cos)()( qllmmlmmM

22132

2

232

2

132112 cos)(2)()( qllmmlmmlmmmM

2112 MM

2

23222 )( lmmM

and 

0sin)(

sin)(sin)(2

212132

222132222132

qqllmm

qqllmmqqllmm
)qB(q,

)cos()(

)cos()(cos)(

21232

2123211321

qqglmm

qqglmmqglmmm
G(q)

where 1m  and 2m  are the masses, and 1l  and 2l  are the 

lengths of the links 1 and 2, respectively. The values of these 

parameter are chosen as kgm 21 , kgm 12 , ml 21  and 

ml 12 . 3m  represents the mass of the load at the end of the 

link 2. The situation that is simulated is as following. The 

manipulator is expected to take a load from position one at 

Rad
T

]1,1[  to position two at Rad
T

]5.0,5.0[  repeatedly. 

The manipulator moves between positions along a predefined 

trajectory during 2 sec and stays in position one and two for 

1 sec. to take and put the load kgm 23  respectively. In this 

simulation, two models are selected for the situation of 

03m  and kgm 23 , i.e. 2N . Each model is estimated 

by applying a factor to the corresponding parameter matrices 

of the original system in each environment to count 

uncertainties, i.e., GG 9.0ˆ
n , BB 8.0ˆ

n and MM 95.0ˆ
n

for 2,1n  , using 03m  and kgm 23  respectively. 

Parameters of identification part is chosen as 1ba , 6

and 01.0 . The control input u  is chosen as in (22), 

where ]40,40[diagA , ]10,10[diag .

The simulation results are shown in Fig. 2 - Fig. 6. As seen 

in Fig. 2, the joint angles track the desired trajectories and 

the proposed control scheme drives the robotic manipulator 

to its desired positions. Moreover, there is no chattering in 

the sliding surface as shown in Fig. 3, and also the values of 

K  converge to constant in the steady-state as is shown in 

Fig. 4 . Also Fig. 5 shows that the tracking errors converge to 

zero. Finally, Fig. 6 shows the blending coefficients of 

control action. 

VI. CONCLUSION

In this paper an adaptive fuzzy sliding mode controller 

using multiple models approach is proposed for robotic 

manipulators. The equivalent control term of the control 

signal is constructed by blending the local control action 

according to the most appropriate model at any environment. 

In this way the tracking errors of the transient state is 

reduced considerably. The discontinuous parts of the 

classical sliding mode controller are replaced by adaptive 

SISO fuzzy systems to avoid the chattering. The system 

uncertainties are compensated by the adaptive control gain 

and therefore the system stability is guaranteed without any 

prior knowledge of the system uncertainties. Since the fuzzy 

systems which are used in the controller are SISO systems, 

therefore the design and implementation of the controller is 

simplified. Moreover, the stability and convergence of the 

overall system are proved by the Lyapunov method. The 

simulation results demonstrate that the proposed adaptive 

fuzzy sliding mode control using multiple models approach, 

as proved theoretically, is a stable control scheme for robotic 

manipulators and works well in complicated situations 
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