
A Novel Flow Control Scheme for Best 
Effort Traffic in NoC Based on Source 

Rate Utility Maximization  
 

Mohammad S. Talebi1, Fahimeh Jafari1,2, Ahmad Khonsari1,3 
1School of Computer Science, IPM 
2Ferdowsi University of Mashhad 

3ECE Department, University of Tehran 
mstalebi@ipm.ir, jafari@ipm.ir, ak@ipm.ir

Abstract—Advances in semiconductor technology, has enabled 
designers to put complex, massively parallel multiprocessor 
systems on a single chip. Network on Chip (NoC) that supports 
high degree of reusability and scalablity, is a new paradigm for 
designing core based System-on-Chip. NoCs provide efficient 
communication services to IPs: communication services with 
guarantees on throughput and latency (GS) and communication 
services with no guarantees on them (BE). However, the run-time 
management of communication in NoC, especially congestion 
control mechanism is a challenging task. This paper considers a 
congestion control scenario which models flow control as a utility-
based optimization problem. Since BE traffic is prone to 
congestion, we assume that GS traffic requirements are being 
preserved at the desired level and regulate BE source rates with the 
solution of the optimization problem. We propose an iterative 
algorithm to solve the optimization problem based on Newton’s 
method. The proposed algorithm can be implemented by a 
centralized controller with low computation and communication 
overhead. 

Keywords-congestion control; Network-on-Chip; utility-
based optimization; iterative algorithm  

I. INTRODUCTION 
Network on Chip (NoC) is a new paradigm structure for 

designing future System on Chips (SoCs) [1,2], where various 
IP resource nodes are connected to the router based square 
network of switches using Resource Network Interfaces, and 
network is used for packet switched on-chip communication 
among cores [3]. A typical NoC architecture will provide a 
scalable communication infrastructure for interconnecting 
cores. Since the communication infrastructure as well as the 
cores from one design can be easily reused for a new product, 
NoC provides maximum possibility for reusability. NoC-based 
system will be much easily used for design, test and 
production. NoCs are efficient communication architectures. 
However the run-time management of their communication, 
especially congestion avoidance is a challenging task. 
Congestion control has been already the subject of research in 
the field of NoC. Furthermore, minimizing the network cost 
(or maximizing network utility) while maintaining the 
required Quality of Service (QoS) is one of the considerable 
factors in NoC architecture design. 

NoCs provide two types of communication services to IPs:  
Guaranteed Service (GS) and Best-Effort (BE) [4]. 
Guaranteed Service requires reservation of resources so as to 
insure data integrity, lossless and ordered data delivery, while 
Best-Effort service does not require any reservation of 

resources and no assurance are meant to be given. BE services 
are easy to use, while GS services require careful 
programming to reserve the required resources in the network  

During the past two decades, several strategies for 
congestion control have been proposed for data networks [5-
8]. However, this issue for Network-on-Chip systems is still 
novel and only a few works exist. [9] has proposed a a flow 
control strategy for on-chip networks based on prediction of 
future congestion problems by routers. In [10], a controller has 
been proposed to determine the appropriate loads for the 
Sources with Best Effort traffic. Dyad [11] control the 
congestion by employing adaptive routing during congestion 
phase.  

The aforementioned works in this issue for NoC ([9]-[11]) 
mainly used prediction-based method to control the flow of 
sources which are prone to congestion. In contrast, we have 
applied a different approach. In this paper, we model the flow 
control as a utility-based maximization problem which is 
constrained by link capacities. We assume GS services are 
being preserved at the desired level and rate allocation of BE 
sources is the main role of the optimization problem. We 
mainly adopt the framework provided by [8] for data 
networks.  

The rest of the paper is organized as follows: in the next 
section we present the system model and flow control 
problem. In section III, we obtain the dual of the optimization 
problem that motivates our approach. In Section IV, we solve 
the dual problem using Newton's Method present the resultant 
congestion control algorithm. The simulation results are given 
in section V and finally, section VI concludes the paper.  

II. SYSTEM MODEL 
Our NoC architecture is based on a two dimensional mesh 

topology and wormhole routing. In wormhole networks, each 
packet is divided into a sequence of flits which are transmitted 
over physical links one by one in pipeline fashion. A hop-to-
hop credit mechanism assures that a flit is transmitted only 
when the receiving port has free space in its input buffer. Our  

 



NoC architecture is lossless, and packets traverse the network 
on a shortest path using a deadlock free XY routing [3].  

High performance wormhole based interconnect systems 
often include virtual channels (VCs) which increase NoC 
throughput. Furthermore, virtual channels must be included 
when links have different capacities to allow the multiplexing 
of several slow streams over a high bandwidth link. Flits of 
different VCs that contend for the same link bandwidth are 
time-multiplexed according to some arbitration policy. Our 
architecture employs a simple policy in which flits of the 
active outgoing VCs are transmitted in a round-robin manner 
over the physical link.  

We model the congestion control problem in NoC as the 
solution to an optimization problem. To have more 
convenience, we turn the aforementioned NoC architecture 
into a mathematical model as in [8]. In this respect, we 
consider NoC as a network with a set of links L and a set of 
sources S . A source consists of Processing Elements (PEs) 
and Input/Output ports. Each link l L∈ is a set of wires, 
busses and channels that are responsible for connecting 
different parts of the NoC and has a fixed capacity of lc
packets/sec. We also denote the set of sources that share link l
by ( )S l . Similarly, the set of links that source s passes 
through, is denoted by ( )L s .

As previously stated, there are two types of traffic in a 
NoC: Guaranteed service (GS) and Best Effort (BE) traffic. 
For notational convenience, we divide the set of sources, S ,
into two parts, each one representing sources with the same 
traffic. In this respect, we denote the set of sources with BE 
and GS traffic by BES and GSS , respectively. Each link l is 
shared between the two aforementioned traffics. GS sources 
will obtain the required amount of the capacity of links and the 
remainder should be allocated to BE sources.   

Our objective is to choose source rates, sx , of BE traffics 
so that to maximize the sum of utilities of all BE traffics. 
Hence the maximization problem can be formulated as [8]: 

max ( )
s

BE

s s
x

s S

U x
∈
∑ (1) 

 subject to:

( ) ( )BE GS

s s l
s S l s S l

x x c l L
∈ ∈

+ ≤ ∀ ∈∑ ∑ (2) 

0s BEx s S> ∀ ∈ (3) 

where sU is a positive, concave and strictly increasing 
function of source rate. Optimization variables are BE source 
rates, i.e. ( ,  )BEx s Ss ∈ . sU is monotonic and we also assume 
that the curvatures of sU satisfy the following condition: 

'' 1
( ) >0     s s BE

s

U x s S
α

− ≥ ∀ ∈  (4) 

The constraint (2) states that the sum of BE source rates 
passing through link l cannot exceed its free capacity, i.e. the 
portion of lc which hasn’t been allocated to GS traffic.  

sU in the economics literature is referred to as utility 
function, hence problem (1) is called a utility-maximization 
problem. There are many choices for utility function with 
specific features and behavior. The simplest form of the utility 
function is the Identity Function, i.e. ( )s s sU x x= , for which 
the problem (1) turns into a sum-rate maximization. One of the 
popular forms of utility functions is logarithmic one, which 
satisfy Proportional Fairness [15]. In this paper, we will 
consider a general utility function and will not restrict 
ourselves to a specific form. The investigation of the features 
of popular utility functions on the rates chosen is one of the 
directions of our future work.       

With the above assumptions, problem (1) is a convex 
optimization problem with linear constraints. Hence it admits 
a unique maximizer [12][13], i.e. there exists an optimal 
source rate vector, * *( , )s BEx x s S= ∈ so that to maximize the 
sum of utilities in problem (1) while satisfying capacity 
constraints.  

Although problem (1) is separable among sources, its 
constraints will remain coupled across the network. The 
coupled natured of such constrained problems, necessitate 
usage of centralized methods like interior point methods 
which pose great computational overhead onto the system 
[12][13].  

One way to reduce the computational complexity is to 
transform the constrained optimization problem into an 
unconstrained one, for which several methods can be used. 
According to the Duality Theory [12][13], each convex 
optimization problem has a dual whose optimal solution can 
lead to the optimal solution of the main problem. In this 
respect, the main problem retroactively called Primal 
Problem. As the dual problem can be defined in such a way to 
be unconstrained, solving the dual is much simpler than the 
primal. In the sequel, we will obtain the dual of problem (1) 
and solve it using simple iterative algorithms.  

For notational convenience, we define: 

( )

ˆ
GS

l l s
s S l

c c x
∈

= − ∑ (5) 

Using the standard optimization methods [12], the 
Lagrangian of the problem (1) can be written as: 

1 ( )

ˆ( )
BE BE

L

s s l s l
s S l s S l

L U x x cλ
∈ = ∈

  = − −   
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where 0lλ > is the Lagrange Multiplier associated with 
constraint (2) for link l . Usually, lλ is called shadow price 
[15] for the economic interpretation of its role in solving the 
primal problem through dual. 



Regarding the Lagrangian of problem (1), the dual 
function is defined as [12]:  

( ) max ( , )
sx

g L xλ λ= (7) 

where λ is the vector of positive Lagrange multipliers. Thus 
the dual function is given by: 
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By Karush-Kuhn-Tucker (KKT) Theorem [12][13], we can 
obtain optimal source rates, i.e. * *( , )s BEx x s S= ∈ . In doing 
so, we should find the roots of ( , ) 0xL x λ∇ = . By taking the 
derivative of (6) with respect to sx , we have 

( )

( )s s
l

l L ss s

U xL
x x

λ
∈

∂∂
= −
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Duality theory states that the optimal source rate vector, 
*x , corresponds to the optimal Lagrange multiplier vector, *λ

[12][13]. In other words, if x is a feasible point of the primal 
problem and x is primal-optimal, the corresponding λ will be 
dual-optimal and vice versa. Therefore, at optimality we have 

* *( , )
( , )x x
L x

λ
λ∇ = 0 (10) 

where 0 is a vector with all zero. From (9), we have 
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*
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Hence, the optimal source rate is given by 
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x f λ
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where f is the inverse function of '
sU whose existence is 

guaranteed by monotonicity of sU in strict sense. 
Substituting *

sx into (8) yields  

* *

( ) 1

ˆ( ) ( )
L

s s s l l l
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∈ =
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where *
sx is given by (11).  

The dual problem is defined as [13]: 

0
min ( )g
λ

λ
≥

(13) 

The dual problem is always convex regardless of 
convexity or non-convexity of the primal problem. Moreover, 
the dual problem can be defined to be unconstrained or 
constrained with simple constraints. Thus, the primal problem 
has been transformed into an unconstrained convex 
optimization problem. 

Convexity of the primal problem (1) guarantees strong 
duality. Thereby the duality gap is zero and solving the dual 
problem leads to optimal point of the primal [12]. Since dual 
problem is convex, it admits a unique optimum, i.e. a unique 
minimizer, which can be obtained using optimization 
algorithms. As the dual problem is unconstrained; solving (13) 
using search methods is much simpler than the primal.  

There exist several methods to search the optimal point of 
an unconstrained optimization problem iteratively [12]. One 
famous and simple ones is Gradient Projection Method [12] 
which uses simple mathematical operations. Another famous 
one is Newton Method that has better convergence behavior at 
the expense of higher computational complexity [12]. Due to 
need for faster convergence, in this paper we use the Newton’s 
Method to solve problem (13). 

For notational convenience in solving the problem using 
the Newton’s Method, in the rest of the paper we may use 
matrix notation. To this end, we define Routing matrix, i.e. 

[ ]ls L SR R ×= , as following: 

1 if ( ) 

0 otherwise 

BE

ls

s S l
R

 ∈= 
(14) 

We also define the source rate vector (for BE traffic) and 
link capacity vector as ( , )s BEx x s S= ∈ and ˆ ˆ( , )lc c l L= ∈ ,
respectively.  

III. FLOW CONTROL FOR BEST EFFORT SOURCES 
In this section, we will solve the dual problem using 

Newton’s Method [12] and present a congestion control 
mechanism to be run for BE traffic by a controller in NoC 
systems.  

The Newton’s Method adjusts shadow prices, i.e. 
Lagrange multiplier vector, in opposite direction to the scaled 
version of gradient of the dual function as follows [12]: 

2 1( 1) ( ) ( )[ ( ( ))] ( ( ))t t t g t g tλ λ γ λ λ
+− + = − ∇ ∇  (15) 

where ( )( 1) ( 1),  lt t l Lλ λ+ = + ∈ , ( ) 0tγ > is a stepsize, 

[ ] max{ , 0}x x+ � and 2 ( ( ))g tλ∇ is the Hessian of ( )g λ .
Since sU is strictly concave, ( )g λ is continuously 
differentiable [13], hence ( )g λ∇ exists. Using (14), the l -th 
element of the gradient vector is given by: 
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Regarding the system model, we have 
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or equivalently in the matrix form 

ˆ( )g c Rxλ∇ = − (18) 

 To obtain the Hessian of ( )g λ , we have 
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2
*( )

ks s
sk l k

g
R x

λ
λ λ λ
∂ ∂

=−
∂ ∂ ∂ ∑ (20) 

Substituting (11) into above equation, yields 
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Using the rule of derivation for inverse function, we have 
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Defining ( )F t as the following  

''( ) diag( 1/ ( ( )), )s s BEF t U x t s S= − ∈ (22) 

we have 

2 ( ) ( ) Tg RF t Rλ∇ = (23) 

and the update equation is given by:  

( ) ( )
1

ˆ( 1) ( ) ( ) ( ) Tt t t RF t R c Rxλ λ γ
+− + = − −  

(24) 

where ( ( ))sx tλ is the approximate of *
sx in time t .

The abovementioned update equation necessitates matrix 
inversion in each iteration which imposes very large 
computational complexity to the system. One remedy to this 
problem is to consider the main diagonal elements of the 
Hessian and to ignore cross terms. Regarding this 
simplification, we only need to calculate the main diagonal 
elements of ( ) TRF t R . By defining 

( ) [ ( )]ij L LE t E t ×=

[ ( ) ]     if 
( )

0 otherwise 

T
ii

ij

RF t R i j
E t

 == 
(25) 

The update equation using the simplified method can be 
rewritten as: 

( )1 ˆ( 1) ( ) ( ) ( )t t t E t c Rxλ λ γ
+− + = − −  (26) 

where ( )E t is a diagonal matrix and its inverse calculation 
poses very light computational load onto the system. It is 
worthnoting that (26) admits a very simple scalar form as: 
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[ ( ) ]
BE

l l l sT
s S lll

t
t t c x

RF t R

γ
λ λ

+
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   + = − −      
∑ (27) 

which in turns implies that the necessary mathematical 
operations using the simplified method only involve simple 
operations and admit very low computational complexity 
overhead. 

(11) and (26) together form an iterative algorithm as the 
solution to the problem (13) and thereby problem (1). In this 
respect, optimal source rates for BE sources can be found 
while satisfying capacity constraints and preserving GS traffic 
requirements. Thus, the aforementioned algorithm can be used 
to control the flow of the BE sources in the NoC.  The 
aforementioned iterative solution can be addressed in 
distributed scenarios. However, due to well-formed structure 
of the NoC, we focus on a centralized scheme; we consider a 
controller to be mounted in the NoC to implement this 
algorithm. The necessary requirement of such a controller is 
the ability to accommodate mathematical operations especially 
performing matrix inversion as in (11) and (26) and the 
allocation of few dedicated links to communicate flow control 
information to nodes with a light GS load. We summarize the 
proposed algorithm for Best Effort traffic as follows. 

 



Algorithm 1: Congestion Control for BE Traffics in NoC 

Initialization: 
1. Initialize l̂c of all links. 
2. Set link price vector to zero.  

 
Loop: 
Do until (max ( 1) ( ) )s sx t x t Error+ − <

1. l L∀ ∈ : Compute new link prices:  

 1 ˆ( 1) ( ) ( ) ( )( )t t t E t c Rxλ λ γ
+− + = − − 

where ( )tγ can be selected as ( ) ( )t a b tγ = + .

2. Compute new BE source rates as follows  

 
( )

( 1) ( ( 1))s l
l L s

x t f tλ
∈

+ = +∑

where  1 ' ( )s sf U x− =

Output: 
Communicate BE source rates to the corresponding nodes. 

Stepsize has an important role on the convergence 
behavior of the update equation. There are several choices for 
stepsize, each one belonging to a predefined category and 
having certain advantages and drawbacks (see [14] and 
references herein). 

In the family of iterative algorithms for distributed 
scenarios, stepsize is usually chosen to be a small enough 
constant so that to guarantee the convergence of the algorithm. 
Constant stepsize benefits from robustness against propagation 
delay and errors in estimation especially in asynchronous 
schemes1. However, it mainly suffers from slow convergence 
rate. On the contrary, time-varying stepsizes can be adapted to 
vary to achieve faster convergence rate. Due to well-formed 
structure of the NoC and its unified administration, in this 
paper we use a time-varying stepsize. Several categories for 
time-varying stepsize exists [14]. In this paper, we focus on a 
specific category known as square-summable but not-
summable which satisfy the following conditions [13][14]: 

( ) 0      t tγ ≥ ∀ (28) 

2

1

( )
k

tγ
∞

=

<∞∑ (29) 

1

( )
k

tγ
∞

=

=∞∑ (30) 

One typical example is of the form ( ) ( )t a b tγ = + ,

where 0a > and 0b ≥ , which we will use in our 
simulations.  
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IV. SIMULATION RESULTS 
In this section we examine the proposed congestion control 

algorithm, listed above as Algorithm 1, for a typical NoC 
architecture. We have simulated a NoC with 4 4× Mesh 
topology which consists of 16 nodes communicating using 24 
shared bidirectional links; each one has a fixed capacity of 1 
Gbps. We assume packets traverse the network on a shortest 
path using a deadlock free XY routing. Each packet consists of 
500 flits and each flit is 16 bit long.  

In order to simulate our scheme, some nodes are 
considered to have a Guaranteed Service data (such as 
Multimedia, etc.) to be sent to a destination while other nodes, 
which maybe in the set of nodes with GS traffic, have a Best 
Effort traffic to be sent. As stated in section II, GS sources 
will obtain the required amount of the capacity of links and the 
remainder should be allocated to BE traffics. 

In our simulation we have chosen logarithmic utility functions. 
In this respect, for source s , we choose ( ) logs s sU x x= . Such 
a utility function satisfies fair conditions among sources and is 
said to be Weighted Proportionally-Fair which is an important 
property in economics [15]. Due to this property, such utility 
functions exhibit fair behavior across all nodes.  

On of the most significant issues of our interest, is the 
convergence behavior of the source rates. We used two 
different scenarios for step-size; both of them are chosen to be 
square-summable but not summable. In this regard, step sizes 
are chosen as 3 (1 )tγ = + and 1 (1 )tγ = + which satisfy 

(28)-(30).   

 Variation of source rates for some nodes using 
aforementioned step sizes are shown in Fig. 1(a)-(b). 
Regarding Fig. 1(a), it’s apparent that after about 80 iterations, 
all source rates will be in the vicinity of the steady state point 
of the algorithm. However, for the second case, Fig. 1(b) 
reveals that at least 100 iterations needed to have source rates 
in the vicinity of the optimal point. Comparing Fig. 1(a) and 
1(b), we realize that the initial value of the step size, directly 
influences the rate of convergence.      

In order to have a better insight about the algorithm 
behavior, the relative error with respect to optimal rates which 
averaged over all sources, is also shown in Fig. 2. It is 
worthnoting that optimal source rates are obtained using CVX 
[16] which is a MATLAB-based software for solving 
disciplined convex optimization problems.  

V. CONCLUSION AND FUTURE WORK 
In this paper we addressed the problem of congestion 

control for BE traffic in NoC systems. Congestion control was 
considered as the solution to the source rate utility�
maximization problem which was solved indirectly through its 
dual using Newton’s method. This was led to an iterative 
algorithm which can be used to determine optimal BE source 
rates and thereby as a means to control the congestion of the 
NoC. The algorithm can be implemented by a controller which 
admits a light communication and communication overhead. 
Further investigation about convergence behavior of the 
algorithm and the effect of different utility functions on the  
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Figure 1.  Source rates for (a) 
3

1 t
γ =

+
and  (b) 

1
1 t

γ =
+

.
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Figure 2.  Average of relative error with respect to optimal  

solution for the three cases. 

BE rates and fairness provision is the main directions of our 
future studies.   
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