Step 1:

- 1- Open "Analyze" sheet and click on "Start Analyze" button.
- 2- In the appeared window, enter the necessary parameters.

Embankment Slope (Degrees):

Notes:

- Always enter 0.0 for surcharge (live) and length of surcharge, because these parts are not active. -
- Use a large number of D and H intervals to obtain more accurate results. _
- Seismic coefficient is the Horizontal acceleration of earthquake in "g", for example 0.2g -

Step 2:

1- After clicking on OK in the previous window, in the following window select the method for calculating lateral earth pressure:

UserForm5	×				
Pressure Distribution Method:					
Puller Method	с				
FHWA Method	с				
Modified Terzaghi & Peck For Clayey Soils	с				
Modified Terzaghi & Peck For Sandy Soils	с				
Terzaghi & Peck For Sandy Soils	с				
Terzaghi & Peck For Stiff Clay	с				
Terzaghi & Peck For Soft Clay	с				
ок					

Step 3:

1- After clicking on OK in the previous window, in the following window select the method for calculating strut forces:

Step 4:

1- In this window, an important assumption is made, for rigid retention systems like Anchored Soldier Piles use "H+", and for flexible systems such as Shotcrete & Nailing use "H".

Step 5:

1- In this window, enter soil parameters, Enter soil parameters for each layer.

JserForm2			1	-	-		-	- Barrison	×
Soil Parameters:									
	Thickness(m)	γn (kN/m3)	γsat (kN/m3)	C (kPa)	Φ (Degrees)	δ (Degrees)	Φa FS	Φp FS	Cohision FS
Soil 1:									
Soil2:									
Soil3:									
Soil4:									
Soil5:									
Soil6:									
Soil7:									
Soil8:									
Soil9:									
Soil 10:									
					OK				
L									

Notes:

- δ is the friction angle between the soil and the wall.
- You can enter safety factor (FS) for ϕ in the calculation of active and passive lateral pressure coefficient, and for cohesion of the soil.

Step 5:

In this step, you can enter the depth (m), angle, and spacing (m) of 3 to 10 rows of struts:

UserForm3	2.50	1212	X
Struts: -			
	Depth	Angle (Degrees)	Spacing
Srtut1:			
Srtut2:			
Srtut3:			
Srtut4:			
Srtut5:			
Srtut6:			
Srtut7:			
Srtut8:			
Srtut9:			
Srtut10:			
		ОК	

Step 6:

Now, go to "Pressure Distribution Diagrams" sheet and observe lateral pressures and strut forces.

Step 7:

- 1- Now, go to "Draw" sheet and click on Calculate button.
- 2- Enter the depth of the start point of failure wedge from the bottom of the excavation.

Step 8:

1- Enter the parameters of nails or anchors here:

Strut 1	Strut 2
Borehole Diameter (mm): Bonding Strength (kPa):	Borehole Diameter (mm): Bonding Strength (kPa):
Type Of Strut: O Ba C Strand	Type Of Strut: O Ba C Strand
Strut 3	Strut 4
Borehole Diameter (mm): Bonding Strength (kPa):	Borehole Diameter (mm): Bonding Strength (kPa):
Type Of Strut: C Ba C Strand	Type Of Strut: C Ba C Strand FS :
Strut 5 -	Strut 6
Borehole Diameter (mm): Bonding Strength (kPa):	Borehole Diameter (mm): Bonding Strength (kPa):
Type Of Strut: O Ba C Strand	Type Of Strut: C Ba C Strand
Strut 7	Strut 8
Borehole Diameter (mm): Bonding Strength (kPa):	Borehole Diameter (mm): Bonding Strength (kPa):
Type Of Strut: C Ba C Strand	Type Of Strut: C Ba C Strand
Strut 9	Strut 10
Borehole Diameter (mm): Bonding Strength (kPa):	Borehole Diameter (mm): Bonding Strength (kPa):
Type Of Strut: C Ba C Strand	Type Of Strut: C Ba C Strand
Borehole Diameter (mm): Bonding Strength (kPa): Type Of Strut: C Ba C Strand	Borehole Diameter (mm): Bonding Strength (kPa): Type Of Strut: C Ba C Strand FS :

Step 8:

1- Go to "Failure Wedge" sheet and observe the failure wedge and the free and bonded length of the nails and anchors:

Step 9:

- Go to "Shear-Moment Analysis" sheet and click on "Analize".

Step 10:

- Go to "Shear-Moment Diagram" sheet and observe the shear and moment diagram of the wall.

Step 10:

- Go to "Summary" sheet and observe the safety factors and all necessary information.